402 research outputs found

    Applying Problem-of-Practice Methods from the Discipline of Higher Education within the Justice System: Turning the Concept of Therapy Dogs for Child Victims into a Statewide Initiative.

    Get PDF
    This Dissertation-in-Practice introduces a law enforcement concept-to-practice model designed by combining tested methods of organizational analysis often utilized by those in the discipline of education. The model incorporates a two phase design with the first phase focusing on implementing and evaluating innovative changes within a medium size law enforcement agency for a micro-level analysis. A second phase examines the ability to replicate the concept program on a statewide, macro-level, by incorporating a re-design method utilizing organizational resource and structure frames. The concept applied to this model was the introduction of a therapy dog interaction during investigations involving crimes against children to reduce anxiety and increase communication. The first phase concluded that the introduction of therapy dogs during law enforcement investigations had a statistical significance in the reduction of anxiety and increased disclosure rates with child victims, without interfering with judicial policies and procedures. The second phase produced a series of flexible options allowing law enforcement agencies of all types to replicate therapy dog programs that are consistent, cost effective, and sustainable. The overall results indicate the use of this concept-to-practice model was successful in examining and introducing an innovative concept that provided a significant impact in the complex organizations of the justice system

    MODELING THE PHYSICS OF FAILURE FOR ELECTRONIC PACKAGING COMPONENTS SUBJECTED TO THERMAL AND MECHANICAL LOADING

    Get PDF
    This dissertation presents three separate studies that examined electronic components using numerical modeling approaches. The use of modeling techniques provided a deeper understanding of the physical phenomena that contribute to the formation of cracks inside ceramic capacitors, damage inside plated through holes, and to dynamic fracture of MEMS structures. The modeling yielded numerical substantiations for previously proposed theoretical explanations. Multi-Layer Ceramic Capacitors (MLCCs) mounted with stiffer lead-free solder have shown greater tolerance than tin-lead solder for single cycle board bending loads with low strain rates. In contrast, flexible terminations have greater tolerance than stiffer standard terminations under the same conditions. It has been proposed that residual stresses in the capacitor account for this disparity. These stresses have been attributed to the higher solidification temperature of lead free solders coupled with the CTE mismatch between the board and the capacitor ceramic. This research indicated that the higher solidification temperatures affected the residual stresses. Inaccuracies in predicting barrel failures of plated through holes are suspected to arise from neglecting the effects of the reflow process on the copper material. This research used thermo mechanical analysis (TMA) results to model the damage in the copper above the glass transition temperature (Tg) during reflow. Damage estimates from the hysteresis plots were used to improve failure predictions. Modeling was performed to examine the theory that brittle fracture in MEMS structures is not affected by strain rates. Numerical modeling was conducted to predict the probability of dynamic failure caused by shock loads. The models used a quasi-static global gravitational load to predict the probability of brittle fracture. The research presented in this dissertation explored drivers for failure mechanisms in flex cracking of capacitors, barrel failures in plated through holes, and dynamic fracture of MEMS. The studies used numerical modeling to provide new insights into underlying physical phenomena. In each case, theoretical explanations were examined where difficult geometries and complex material properties made it difficult or impossible to obtain direct measurements

    A Lunar Surface System Supportability Technology Development Roadmap

    Get PDF
    This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA's Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of "supportability", in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in a environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test & Verification, Maintenance & Repair, and Scavenging & Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of technologies with widest possible capability and utility with a minimum impact on crew time and training and remain within the time and cost constraints of the Constellation progra

    A Lunar Surface System Supportability Technology Development Roadmap

    Get PDF
    This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA s Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of supportability, in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test and Verification, Maintenance and Repair, and Scavenging and Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of technologies with widest possible capability and utility with a minimum impact on crew time and training and remain within the time and cost constraints of the Constellation program

    Platform-based design, test and fast verification flow for mixed-signal systems on chip

    Get PDF
    This research is providing methodologies to enhance the design phase from architectural space exploration and system study to verification of the whole mixed-signal system. At the beginning of the work, some innovative digital IPs have been designed to develop efficient signal conditioning for sensor systems on-chip that has been included in commercial products. After this phase, the main focus has been addressed to the creation of a re-usable and versatile test of the device after the tape-out which is close to become one of the major cost factor for ICs companies, strongly linking it to model’s test-benches to avoid re-design phases and multi-environment scenarios, producing a very effective approach to a single, fast and reliable multi-level verification environment. All these works generated different publications in scientific literature. The compound scenario concerning the development of sensor systems is presented in Chapter 1, together with an overview of the related market with a particular focus on the latest MEMS and MOEMS technology devices, and their applications in various segments. Chapter 2 introduces the state of the art for sensor interfaces: the generic sensor interface concept (based on sharing the same electronics among similar applications achieving cost saving at the expense of area and performance loss) versus the Platform Based Design methodology, which overcomes the drawbacks of the classic solution by keeping the generality at the highest design layers and customizing the platform for a target sensor achieving optimized performances. An evolution of Platform Based Design achieved by implementation into silicon of the ISIF (Intelligent Sensor InterFace) platform is therefore presented. ISIF is a highly configurable mixed-signal chip which allows designers to perform an effective design space exploration and to evaluate directly on silicon the system performances avoiding the critical and time consuming analysis required by standard platform based approach. In chapter 3 we describe the design of a smart sensor interface for conditioning next generation MOEMS. The adoption of a new, high performance and high integrated technology allow us to integrate not only a versatile platform but also a powerful ARM processor and various IPs providing the possibility to use the platform not only as a conditioning platform but also as a processing unit for the application. In this chapter a description of the various blocks is given, with a particular emphasis on the IP developed in order to grant the highest grade of flexibility with the minimum area occupation. The architectural space evaluation and the application prototyping with ISIF has enabled an effective, rapid and low risk development of a new high performance platform achieving a flexible sensor system for MEMS and MOEMS monitoring and conditioning. The platform has been design to cover very challenging test-benches, like a laser-based projector device. In this way the platform will not only be able to effectively handle the sensor but also all the system that can be built around it, reducing the needed for further electronics and resulting in an efficient test bench for the algorithm developed to drive the system. The high costs in ASIC development are mainly related to re-design phases because of missing complete top-level tests. Analog and digital parts design flows are separately verified. Starting from these considerations, in the last chapter a complete test environment for complex mixed-signal chips is presented. A semi-automatic VHDL-AMS flow to provide totally matching top-level is described and then, an evolution for fast self-checking test development for both model and real chip verification is proposed. By the introduction of a Python interface, the designer can easily perform interactive tests to cover all the features verification (e.g. calibration and trimming) into the design phase and check them all with the same environment on the real chip after the tape-out. This strategy has been tested on a consumer 3D-gyro for consumer application, in collaboration with SensorDynamics AG

    Classical design thinking to organization design in the tourism sector

    Get PDF
    A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and EconomicsThe purpose of this action research is the identification and experimentation of the concepts and methods used in classical design with the aim of understanding its implication for the engineering organization design theory. This way, to renew this engineering organization design, a design space was conceived to use classical design methods in order to generate not only a designed-based organization design interface for an Eco Hotel, but also to create useful methods and tools for organization design practitioners and non-organization design practitioners, which facilitate the organization design construction and maintenance. For this purpose it was applied and tested in several real organizations, interviews and focus groups. The final result of this action research will be a design-based organization design generator and its outcome that is a unique functional, simple and sustainable Eco Hotel design-based organization design interface that people love, considering always the context and user profile in which it is inserted

    A Design Process Centric Application of State Space Modeling as a Function of Communications and Cognitive Skills Assessments.

    Full text link
    Humans have a reliable basic probabilistic intuition. We utilize our probabilistic intuition in many day-to-day activities such as driving. In fact any interaction that occurs in the presence of other independent actors requires some probabilistic assessment. While we are good at sorting between rare and common events, determining if these events are statistical significant is always subject to scrutiny. Quite often the bounds of statistical significance are at ends with the ‘common sense’ expectation. While our probabilistic intuition is good for first moment effects such as driving a car, throwing a football and understanding simplistic mathematical models, our probabilistic intuition fails when we need to evaluate secondary effects such as high speed turns, playing golf or understanding complex mathematical models. When our probabilistic intuition is challenged misinterpretation of results and skewed perspectives of possible outcomes will occur. The work presented in this dissertation provides a mathematical formulation that will provide a guide to when our probabilistic intuition will be challenged. This dissertation will discuss the development of the Process Failure Estimation Technique (ProFET). A multitude of potential team parameters could have been selected, interpersonal communication effectiveness and cognitive skill assessments seemed the most obvious first steps. This is due to the prolific discussion on communication and the general acceptance of the cognitive testing as an indicator of performance potential. The teams skill set must be variable with respect to time in order to accomplish the required objectives of each phase of the design process. ProFET develops a metric for the design process that is sensitive to the team composition and structure. This metric is applied to a domain that is traditionally devoid of objective scoring. With the use of ProFET more informed decisions on team structure and composition can be made at critical junctions of the design process. Specifically, ProFET looks at how variability propagates through the design activities as opposed to attempting to quantify the actual values of design activities, which is the focus of the majority of other design research.PhDNaval Architecture and Marine EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116679/1/jdstrick_1.pd

    Fault-based Analysis of Industrial Cyber-Physical Systems

    Get PDF
    The fourth industrial revolution called Industry 4.0 tries to bridge the gap between traditional Electronic Design Automation (EDA) technologies and the necessity of innovating in many indus- trial fields, e.g., automotive, avionic, and manufacturing. This complex digitalization process in- volves every industrial facility and comprises the transformation of methodologies, techniques, and tools to improve the efficiency of every industrial process. The enhancement of functional safety in Industry 4.0 applications needs to exploit the studies related to model-based and data-driven anal- yses of the deployed Industrial Cyber-Physical System (ICPS). Modeling an ICPS is possible at different abstraction levels, relying on the physical details included in the model and necessary to describe specific system behaviors. However, it is extremely complicated because an ICPS is com- posed of heterogeneous components related to different physical domains, e.g., digital, electrical, and mechanical. In addition, it is also necessary to consider not only nominal behaviors but even faulty behaviors to perform more specific analyses, e.g., predictive maintenance of specific assets. Nevertheless, these faulty data are usually not present or not available directly from the industrial machinery. To overcome these limitations, constructing a virtual model of an ICPS extended with different classes of faults enables the characterization of faulty behaviors of the system influenced by different faults. In literature, these topics are addressed with non-uniformly approaches and with the absence of standardized and automatic methodologies for describing and simulating faults in the different domains composing an ICPS. This thesis attempts to overcome these state-of-the-art gaps by proposing novel methodologies, techniques, and tools to: model and simulate analog and multi-domain systems; abstract low-level models to higher-level behavioral models; and monitor industrial systems based on the Industrial Internet of Things (IIOT) paradigm. Specifically, the proposed contributions involve the exten- sion of state-of-the-art fault injection practices to improve the ICPSs safety, the development of frameworks for safety operations automatization, and the definition of a monitoring framework for ICPSs. Overall, fault injection in analog and digital models is the state of the practice to en- sure functional safety, as mentioned in the ISO 26262 standard specific for the automotive field. Starting from state-of-the-art defects defined for analog descriptions, new defects are proposed to enhance the IEEE P2427 draft standard for analog defect modeling and coverage. Moreover, dif- ferent techniques to abstract a transistor-level model to a behavioral model are proposed to speed up the simulation of faulty circuits. Therefore, unlike the electrical domain, there is no extensive use of fault injection techniques in the mechanical one. Thus, extending the fault injection to the mechanical and thermal fields allows for supporting the definition and evaluation of more reliable safety mechanisms. Hence, a taxonomy of mechanical faults is derived from the electrical domain by exploiting the physical analogies. Furthermore, specific tools are built for automatically instru- menting different descriptions with multi-domain faults. The entire work is proposed as a basis for supporting the creation of increasingly resilient and secure ICPS that need to preserve functional safety in any operating context
    • 

    corecore