232,823 research outputs found

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE

    SciTech News Volume 71, No. 2 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division 9 Aerospace Section of the Engineering Division 12 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 14 Reviews Sci-Tech Book News Reviews 16 Advertisements IEEE

    Special section on smart grids: A hub of interdisciplinary research : IEEE ACCESS Special section editorial smart grids: A hub of interdisciplinary research

    Get PDF
    International audienceThe smart grid is an important hub of interdisciplinary research where researchers from different areas of science and technology combine their efforts to enhance the traditional electrical power grid. Due to these efforts, the traditional electrical grid is now evolving. The envisioned smart grid will bring social, environmental, ethical, legal and economic benefits. Smart grid systems increasingly involve machine-to-machine communication as well as human-to-human, or simple information retrieval. Thus, the dimensionality of the system is massive. The smart grid is the combination of different technologies, including control system theory, communication networks, pervasive computing , embedded sensing devices, electric vehicles, smart cities, renewable energy sources, Internet of Things, wireless sensor networks, cyber physical systems, and green communication. Due to these diverse activities and significant attention from researchers, education activities in the smart grid area are also growing. The smart grid is designed to replace the traditional electrical power grid. The envisioned smart grid typically consists of three networks: Home Area Networks (HANs), Neighborhood Area Networks (NANs), and Wide Area Networks (WANs). HANs connect the devices within the premises of the consumer and connect smart meters, Plug-in Electric Vehicles (PEVs), and distributed renewable energy sources. NANs connect multiple HANs and communicate the collected information to a network gateway. WANs serve as the communication backbone. Communication technologies play a vital role in the successful operation of smart grid. These communication technologies can be adopted based upon the specific features required by HANs, NANs, and WANs. Both wired and the wireless communication technologies can be used in the smart grid [1]. However, wireless communication technologies are suitable for many smart grid applications due to the continuous development in the wireless research domain. One drawback of wireless communication technologies is the limited availability of radio spectrum. The use of cognitive radio in smart grid communication will be helpful to break the spectrum gridlock through advanced radio design and operating in multiple settings, such as underlay, overlay, and interweave [2]. The smart grid is the combination of diverse sets of facilities and technologies. Thus, the monitoring and control of transmission lines, distribution facilities, energy generation plants, and as well as video monitoring of consumer premises can be conducted through the use of wireless sensor networks [3]–[6]. In remote sites and places where human intervention is not possible, wireless sensor and actuator networks can be useful for the successful smart grid operation [7], [8]. Since wireless sensor networks operate on the Industrial, Scientific, and Medical (ISM) band, the spectrum might get congested due to overlaid deployment of wireless sensor networks in the same premises. Thus, to deal with this spectrum congestion challenge, cognitive radio sensor networks can be used in smart grid environments [9], [10]. The objective of this Special Section in IEEE ACCESS is to showcase the most recent advances in the interdisciplinary research areas encompassing the smart grid. This Special Section brings together researchers from diverse fields and specializations, such as communications engineering, computer science, electrical and electronics engineering, educators, mathematicians and specialists in areas related to smart grids. In this Special Section, we invited researchers from academia, industry, and government to discuss challenging ideas, novel research contributions, demonstration results, and standardization efforts on the smart grid and related areas. This Special Section is a collection of eleven articles. These articles are grouped into the following four areas: (a) Reliability, security, and privacy for smart grid, (b), Demand response management, understanding customer behavior, and social networking applications for smart grid, (c) Smart cities, renewable energy, and green smart grid, and (d) Communication technologies, control and management for the smart grid

    Prolog to the section on wireless communications technology

    No full text
    The authors take a look at the existing 3G systems in service and investigate the capabilities of 4G, and while the theoretical throughput of these cellular systems is expected to be high, the future promises to offer more technological improvements and innovations.<br/
    • …
    corecore