16,578 research outputs found

    On the pseudolinear crossing number

    Full text link
    A drawing of a graph is {\em pseudolinear} if there is a pseudoline arrangement such that each pseudoline contains exactly one edge of the drawing. The {\em pseudolinear crossing number} of a graph GG is the minimum number of pairwise crossings of edges in a pseudolinear drawing of GG. We establish several facts on the pseudolinear crossing number, including its computational complexity and its relationship to the usual crossing number and to the rectilinear crossing number. This investigation was motivated by open questions and issues raised by Marcus Schaefer in his comprehensive survey of the many variants of the crossing number of a graph.Comment: 12 page

    The Orchard crossing number of an abstract graph

    Full text link
    We introduce the Orchard crossing number, which is defined in a similar way to the well-known rectilinear crossing number. We compute the Orchard crossing number for some simple families of graphs. We also prove some properties of this crossing number. Moreover, we define a variant of this crossing number which is tightly connected to the rectilinear crossing number, and compute it for some simple families of graphs.Comment: 17 pages, 10 figures. Totally revised, new material added. Submitte

    Simple realizability of complete abstract topological graphs simplified

    Full text link
    An abstract topological graph (briefly an AT-graph) is a pair A=(G,X)A=(G,\mathcal{X}) where G=(V,E)G=(V,E) is a graph and X⊆(E2)\mathcal{X}\subseteq {E \choose 2} is a set of pairs of its edges. The AT-graph AA is simply realizable if GG can be drawn in the plane so that each pair of edges from X\mathcal{X} crosses exactly once and no other pair crosses. We show that simply realizable complete AT-graphs are characterized by a finite set of forbidden AT-subgraphs, each with at most six vertices. This implies a straightforward polynomial algorithm for testing simple realizability of complete AT-graphs, which simplifies a previous algorithm by the author. We also show an analogous result for independent Z2\mathbb{Z}_2-realizability, where only the parity of the number of crossings for each pair of independent edges is specified.Comment: 26 pages, 17 figures; major revision; original Section 5 removed and will be included in another pape

    On the Maximum Crossing Number

    Full text link
    Research about crossings is typically about minimization. In this paper, we consider \emph{maximizing} the number of crossings over all possible ways to draw a given graph in the plane. Alpert et al. [Electron. J. Combin., 2009] conjectured that any graph has a \emph{convex} straight-line drawing, e.g., a drawing with vertices in convex position, that maximizes the number of edge crossings. We disprove this conjecture by constructing a planar graph on twelve vertices that allows a non-convex drawing with more crossings than any convex one. Bald et al. [Proc. COCOON, 2016] showed that it is NP-hard to compute the maximum number of crossings of a geometric graph and that the weighted geometric case is NP-hard to approximate. We strengthen these results by showing hardness of approximation even for the unweighted geometric case and prove that the unweighted topological case is NP-hard.Comment: 16 pages, 5 figure

    Crossing Minimization for 1-page and 2-page Drawings of Graphs with Bounded Treewidth

    Full text link
    We investigate crossing minimization for 1-page and 2-page book drawings. We show that computing the 1-page crossing number is fixed-parameter tractable with respect to the number of crossings, that testing 2-page planarity is fixed-parameter tractable with respect to treewidth, and that computing the 2-page crossing number is fixed-parameter tractable with respect to the sum of the number of crossings and the treewidth of the input graph. We prove these results via Courcelle's theorem on the fixed-parameter tractability of properties expressible in monadic second order logic for graphs of bounded treewidth.Comment: Graph Drawing 201
    • …
    corecore