6,691 research outputs found

    The effect of temperature-dependent solubility on the onset of thermosolutal convection in a horizontal porous layer

    Get PDF
    We consider the onset of thermosolutal (double-diffusive) convection of a binary fluid in a horizontal porous layer subject to fixed temperatures and chemical equilibrium on the bounding surfaces, in the case when the solubility of the dissolved component depends on temperature. We use a linear stability analysis to investigate how the dissolution or precipitation of this component affects the onset of convection and the selection of an unstable wavenumber; we extend this analysis using a Galerkin method to predict the structure of the initial bifurcation and compare our analytical results with numerical integration of the full nonlinear equations. We find that the reactive term may be stabilizing or destabilizing, with subtle effects particularly when the thermal gradient is destabilizing but the solutal gradient is stabilizing. The preferred spatial wavelength of convective cells at onset may also be substantially increased or reduced, and strongly reactive systems tend to prefer direct to subcritical bifurcation. These results have implications for geothermal-reservoir management and ore prospecting

    Numerical solution of steady-state groundwater flow and solute transport problems: Discontinuous Galerkin based methods compared to the Streamline Diffusion approach

    Full text link
    In this study, we consider the simulation of subsurface flow and solute transport processes in the stationary limit. In the convection-dominant case, the numerical solution of the transport problem may exhibit non-physical diffusion and under- and overshoots. For an interior penalty discontinuous Galerkin (DG) discretization, we present a hh-adaptive refinement strategy and, alternatively, a new efficient approach for reducing numerical under- and overshoots using a diffusive L2L^2-projection. Furthermore, we illustrate an efficient way of solving the linear system arising from the DG discretization. In 22-D and 33-D examples, we compare the DG-based methods to the streamline diffusion approach with respect to computing time and their ability to resolve steep fronts

    Boundary knot method: A meshless, exponential convergence, integration-free, and boundary-only RBF technique

    Full text link
    Based on the radial basis function (RBF), non-singular general solution and dual reciprocity principle (DRM), this paper presents an inheretnly meshless, exponential convergence, integration-free, boundary-only collocation techniques for numerical solution of general partial differential equation systems. The basic ideas behind this methodology are very mathematically simple and generally effective. The RBFs are used in this study to approximate the inhomogeneous terms of system equations in terms of the DRM, while non-singular general solution leads to a boundary-only RBF formulation. The present method is named as the boundary knot method (BKM) to differentiate it from the other numerical techniques. In particular, due to the use of non-singular general solutions rather than singular fundamental solutions, the BKM is different from the method of fundamental solution in that the former does no need to introduce the artificial boundary and results in the symmetric system equations under certain conditions. It is also found that the BKM can solve nonlinear partial differential equations one-step without iteration if only boundary knots are used. The efficiency and utility of this new technique are validated through some typical numerical examples. Some promising developments of the BKM are also discussed.Comment: 36 pages, 2 figures, Welcome to contact me on this paper: Email: [email protected] or [email protected]

    An asymptotic induced numerical method for the convection-diffusion-reaction equation

    Get PDF
    A parallel algorithm for the efficient solution of a time dependent reaction convection diffusion equation with small parameter on the diffusion term is presented. The method is based on a domain decomposition that is dictated by singular perturbation analysis. The analysis is used to determine regions where certain reduced equations may be solved in place of the full equation. Parallelism is evident at two levels. Domain decomposition provides parallelism at the highest level, and within each domain there is ample opportunity to exploit parallelism. Run time results demonstrate the viability of the method

    Multidimensional Modeling of Type I X-ray Bursts. I. Two-Dimensional Convection Prior to the Outburst of a Pure Helium Accretor

    Full text link
    We present multidimensional simulations of the early convective phase preceding ignition in a Type I X-ray burst using the low Mach number hydrodynamics code, MAESTRO. A low Mach number approach is necessary in order to perform long-time integration required to study such phenomena. Using MAESTRO, we are able to capture the expansion of the atmosphere due to large-scale heating while capturing local compressibility effects such as those due to reactions and thermal diffusion. We also discuss the preparation of one-dimensional initial models and the subsequent mapping into our multidimensional framework. Our method of initial model generation differs from that used in previous multidimensional studies, which evolved a system through multiple bursts in one dimension before mapping onto a multidimensional grid. In our multidimensional simulations, we find that the resolution necessary to properly resolve the burning layer is an order of magnitude greater than that used in the earlier studies mentioned above. We characterize the convective patterns that form and discuss their resulting influence on the state of the convective region, which is important in modeling the outburst itself.Comment: 47 pages including 18 figures; submitted to ApJ; A version with higher resolution figures can be found at http://astro.sunysb.edu/cmalone/research/pure_he4_xrb/ms.pd

    Domain decomposition methods for the parallel computation of reacting flows

    Get PDF
    Domain decomposition is a natural route to parallel computing for partial differential equation solvers. Subdomains of which the original domain of definition is comprised are assigned to independent processors at the price of periodic coordination between processors to compute global parameters and maintain the requisite degree of continuity of the solution at the subdomain interfaces. In the domain-decomposed solution of steady multidimensional systems of PDEs by finite difference methods using a pseudo-transient version of Newton iteration, the only portion of the computation which generally stands in the way of efficient parallelization is the solution of the large, sparse linear systems arising at each Newton step. For some Jacobian matrices drawn from an actual two-dimensional reacting flow problem, comparisons are made between relaxation-based linear solvers and also preconditioned iterative methods of Conjugate Gradient and Chebyshev type, focusing attention on both iteration count and global inner product count. The generalized minimum residual method with block-ILU preconditioning is judged the best serial method among those considered, and parallel numerical experiments on the Encore Multimax demonstrate for it approximately 10-fold speedup on 16 processors
    corecore