6,319 research outputs found

    Lock-free Concurrent Data Structures

    Full text link
    Concurrent data structures are the data sharing side of parallel programming. Data structures give the means to the program to store data, but also provide operations to the program to access and manipulate these data. These operations are implemented through algorithms that have to be efficient. In the sequential setting, data structures are crucially important for the performance of the respective computation. In the parallel programming setting, their importance becomes more crucial because of the increased use of data and resource sharing for utilizing parallelism. The first and main goal of this chapter is to provide a sufficient background and intuition to help the interested reader to navigate in the complex research area of lock-free data structures. The second goal is to offer the programmer familiarity to the subject that will allow her to use truly concurrent methods.Comment: To appear in "Programming Multi-core and Many-core Computing Systems", eds. S. Pllana and F. Xhafa, Wiley Series on Parallel and Distributed Computin

    Natural language processing

    Get PDF
    Beginning with the basic issues of NLP, this chapter aims to chart the major research activities in this area since the last ARIST Chapter in 1996 (Haas, 1996), including: (i) natural language text processing systems - text summarization, information extraction, information retrieval, etc., including domain-specific applications; (ii) natural language interfaces; (iii) NLP in the context of www and digital libraries ; and (iv) evaluation of NLP systems

    Analyzing the Gadgets Towards a Metric to Measure Gadget Quality

    Full text link
    Current low-level exploits often rely on code-reuse, whereby short sections of code (gadgets) are chained together into a coherent exploit that can be executed without the need to inject any code. Several protection mechanisms attempt to eliminate this attack vector by applying code transformations to reduce the number of available gadgets. Nevertheless, it has emerged that the residual gadgets can still be sufficient to conduct a successful attack. Crucially, the lack of a common metric for "gadget quality" hinders the effective comparison of current mitigations. This work proposes four metrics that assign scores to a set of gadgets, measuring quality, usefulness, and practicality. We apply these metrics to binaries produced when compiling programs for architectures implementing Intel's recent MPX CPU extensions. Our results demonstrate a 17% increase in useful gadgets in MPX binaries, and a decrease in side-effects and preconditions, making them better suited for ROP attacks.Comment: International Symposium on Engineering Secure Software and Systems, Apr 2016, London, United Kingdo

    A Verified Information-Flow Architecture

    Get PDF
    SAFE is a clean-slate design for a highly secure computer system, with pervasive mechanisms for tracking and limiting information flows. At the lowest level, the SAFE hardware supports fine-grained programmable tags, with efficient and flexible propagation and combination of tags as instructions are executed. The operating system virtualizes these generic facilities to present an information-flow abstract machine that allows user programs to label sensitive data with rich confidentiality policies. We present a formal, machine-checked model of the key hardware and software mechanisms used to dynamically control information flow in SAFE and an end-to-end proof of noninterference for this model. We use a refinement proof methodology to propagate the noninterference property of the abstract machine down to the concrete machine level. We use an intermediate layer in the refinement chain that factors out the details of the information-flow control policy and devise a code generator for compiling such information-flow policies into low-level monitor code. Finally, we verify the correctness of this generator using a dedicated Hoare logic that abstracts from low-level machine instructions into a reusable set of verified structured code generators

    Why Do Developers Get Password Storage Wrong? A Qualitative Usability Study

    Full text link
    Passwords are still a mainstay of various security systems, as well as the cause of many usability issues. For end-users, many of these issues have been studied extensively, highlighting problems and informing design decisions for better policies and motivating research into alternatives. However, end-users are not the only ones who have usability problems with passwords! Developers who are tasked with writing the code by which passwords are stored must do so securely. Yet history has shown that this complex task often fails due to human error with catastrophic results. While an end-user who selects a bad password can have dire consequences, the consequences of a developer who forgets to hash and salt a password database can lead to far larger problems. In this paper we present a first qualitative usability study with 20 computer science students to discover how developers deal with password storage and to inform research into aiding developers in the creation of secure password systems
    • …
    corecore