41,746 research outputs found

    Smart Sustainable Manufacturing Systems

    Get PDF
    With the advent of disruptive digital technologies, companies are facing unprecedented challenges and opportunities. Advanced manufacturing systems are of paramount importance in making key enabling technologies and new products more competitive, affordable, and accessible, as well as for fostering their economic and social impact. The manufacturing industry also serves as an innovator for sustainability since automation coupled with advanced manufacturing technologies have helped manufacturing practices transition into the circular economy. To that end, this Special Issue of the journal Applied Sciences, devoted to the broad field of Smart Sustainable Manufacturing Systems, explores recent research into the concepts, methods, tools, and applications for smart sustainable manufacturing, in order to advance and promote the development of modern and intelligent manufacturing systems. In light of the above, this Special Issue is a collection of the latest research on relevant topics and addresses the current challenging issues associated with the introduction of smart sustainable manufacturing systems. Various topics have been addressed in this Special Issue, which focuses on the design of sustainable production systems and factories; industrial big data analytics and cyberphysical systems; intelligent maintenance approaches and technologies for increased operating life of production systems; zero-defect manufacturing strategies, tools and methods towards online production management; and connected smart factories

    Editorial for Special Issue on “Electronic Systems and Energy Harvesting Methods for Automation, Mechatronics and Automotive”

    Get PDF
    none3noElectronic apparatus have become essential components of civil and industrial systems, including the automotive, home and building automation, Industrial IoT (Internet of Things) and control applications, and playing an essential role in improving security, efficiency, manageability, and rapid feedback [1–3]. Indeed, the increasing demands of electronic systems have led to innovations and findings in electronic networks for automotive and automation plants, replacing efficiently and securely mechanical and hydraulic sections [4]. Also, the researchers have focused their attention on meeting the increasing power demand of vehicles equipment, developing 42-V automotive systems. Moreover, smart buildings and homes represent a very actual research topic in the scientific community, aimed to improve energy conservation and the liveability of everyday life environments, thanks to IoT solutions [5]. In fact, smart homes and buildings comprise innovative solutions enabling communication between users and the infrastructure, as well as performing advanced monitoring tasks, like surveillance, light and water management, HVAC (heating, ventilation and air conditioning) system management, smart energy monitoring and elderly care. IoT technology employs sensors to detect the environmental temperature for the HVAC system, water and energy consumption, and health monitoring and decision-making systems to assist elderly people and detect fires [6,7]. The scientific community is concentrating their efforts to design innovative infrastructures, management models as well as operating scenarios to make production activities simpler and more efficient [8]. In this field, IoT is one of the key elements triggering this revolution, enabling communications between machines (M2M), thus creating a manufacturing environment human-free. The combination of M2M, IoT and CPS (cyber physical systems) makes the manufacturing systems more robust, reliable and efficient. Besides, cloud computing constitutes a powerful tool, promising to solve several difficult issues with previous productive architectures. For instance, in [9], a novel architecture integrating cloud computing, IoT, and smart devices, was presented. The model uses modern manufacturing technologies, allowing highly configurable, flexible manufacturing processes involving human and robotic participants. This Special Issue aimed to cover a wide range of disciplines and application fields, collecting innovative studies on advanced sensing and energy harvesting technologies and applications in automotive, automation and mechatronics fields. The introduced innovations could mitigate the impact of human activities on the environment and revolutionize the production process by employing eco-sustainable production models, preventing climate change and natural resources waste. A total of 5 papers have been published in this special issue; the paper covers a wide range of topics but is deemed relevant to the topics covered by the special issues. The authors are from geographically distributed countries such as Italy, Mexico, Spain, and China. This reflects the great impact of the proposed topic and the effective organization of the guest editorial team of this special issue.openPaolo Visconti, Nicola Ivan Giannoccaro, Roberto de FazioVisconti, Paolo; Giannoccaro, NICOLA IVAN; DE FAZIO, Robert

    Smart Manufacturing

    Get PDF
    This book is a collection of 11 articles that are published in the corresponding Machines Special Issue “Smart Manufacturing”. It represents the quality, breadth and depth of the most updated study in smart manufacturing (SM); in particular, digital technologies are deployed to enhance system smartness by (1) empowering physical resources in production, (2) utilizing virtual and dynamic assets over the Internet to expand system capabilities, (3) supporting data-driven decision-making activities at various domains and levels of businesses, or (4) reconfiguring systems to adapt to changes and uncertainties. System smartness can be evaluated by one or a combination of performance metrics such as degree of automation, cost-effectiveness, leanness, robustness, flexibility, adaptability, sustainability, and resilience. This book features, firstly, the concepts digital triad (DT-II) and Internet of digital triad things (IoDTT), proposed to deal with the complexity, dynamics, and scalability of complex systems simultaneously. This book also features a comprehensive survey of the applications of digital technologies in space instruments; a systematic literature search method is used to investigate the impact of product design and innovation on the development of space instruments. In addition, the survey provides important information and critical considerations for using cutting edge digital technologies in designing and manufacturing space instruments

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Industry 4.0: The Future of Indo-German Industrial Collaboration

    Get PDF
    Industry 4.0 can be described as the fourth industrial revolution, a mega- trend that affects every company around the world. It envisions interconnections and collaboration between people, products and machines within and across enterprises. Why does Industry 4.0 make for an excellent platform for industrial collaboration between India and Germany? The answers lie in economic as well as social factors. Both countries have strengths and weakness and strategic collaboration using the principles of Industry 4.0 can help both increase their industrial output, GDP and make optimal use of human resources. As a global heavy weight in manufacturing and machine export, Germany has a leading position in the development and deployment of Industry 4.0 concepts and technology. However, its IT sector, formed by a labor force of 800,000 employees, is not enough. It needs more professionals to reach its full potential. India, on the other hand, is a global leader in IT and business process outsourcing. But its manufacturing industry needs to grow significantly and compete globally. These realities clearly show the need for Industry 4.0-based collaboration between Germany and India. So how does Industry 4.0 work? In a first step, we look at the technical pers- pective – the vertical and horizontal integration of Industry 4.0 principles in enterprises. Vertical integration refers to operations within Smart Factories and horizontal integration to Smart Supply Chains across businesses. In the second step, we look at manufacturing, chemical industry and the IT sector as potential targets for collaboration between the two countries. We use case studies to illustrate the benefits of the deployment of Industry 4.0. Potential collaboration patterns are discussed along different forms of value chains and along companies’ ability to achieve Industry 4.0 status. We analyse the social impact of Industry 4.0 on India and Germany and find that it works very well in the coming years. Germany with its dwindling labor force might be compensated through the automation. This will ensure continued high productivity levels and rise in GDP. India, on the other hand has a burgeoning labor market, with 10 million workers annually entering the job market. Given that the manufacturing sector will be at par with Europe in efficiency and costs by 2023, pressure on India’s labor force will increase even more. Even its robust IT sector will suffer fewer hires because of increased automation. Rapid development of technologies – for the Internet of Things (IoT) or for connectivity like Low-Power WAN – makes skilling and reskilling of the labor force critical for augmenting smart manufacturing. India and Germany have been collaborating at three levels relevant to Industry 4.0 – industry, government and academics. How can these be taken forward? The two countries have a long history of trade. The Indo-German Chamber of Commerce (IGCC) is the largest such chamber in India and the largest German chamber worldwide. VDMA (Verband Deutscher Maschinen- und Anlagenbau, Mechanical Engineering Industry Association), the largest industry association in Europe, maintains offices in India. Indian key players in IT, in turn, have subsidia- ries in Germany and cooperate with German companies in the area of Industry 4.0. Collaboration is also supported on governmental level. As government initiatives go, India has launched the “Make in India” initiative and the “Make in India Mittelstand! (MIIM)” programme as a part of it. The Indian Government is also supporting “smart manufacturing” initiatives in a major way. Centers of Excellence driven by the industry and academic bodies are being set up. Germany and India have a long tradition of research collaboration as well. Germany is the second scientific collaborator of India and Indian students form the third largest group of foreign students in Germany. German institutions like the German Academic Exchange Service (DAAD) or the German House for Research and Innovation (DWIH) are working to strengthen ties between the scientific communities of the two countries, and between their academia and industry. What prevents Industry 4.0 from becoming a more widely used technology? Recent surveys in Germany and India show that awareness about Industry 4.0 is still low, especially among small and medium manufacturing enterprises. IT companies, on the other hand, are better prepared. There is a broad demand for support, regarding customtailored solutions, information on case studies and the willingness to participate in Industry 4.0 pilot projects and to engage in its platform and networking activities. We also found similar responses at workshops conducted with Industry 4.0 stakehold- ers in June 2017 in Bangalore and Pune and in an online survey. What can be done to change this? Both countries should strengthen their efforts to create awareness for Industry 4.0, especially among small and medium enterprises. Germany should also put more emphasis on making their Industry 4.0 technology known to the Indian market. India’s IT giants, on the other hand, should make their Industry 4.0 offers more visible to the German market. The governments should support the establishing of joint Industry 4.0 collaboration platforms, centers of excellence and incubators to ease the dissemination of knowledge and technology. On academic level, joint research programs and exchange programs should be set up to foster the skilling of labor force in the deployment of Industry 4.0 methods and technologies

    A ROS2 based communication architecture for control in collaborative and intelligent automation systems

    Get PDF
    Collaborative robots are becoming part of intelligent automation systems in modern industry. Development and control of such systems differs from traditional automation methods and consequently leads to new challenges. Thankfully, Robot Operating System (ROS) provides a communication platform and a vast variety of tools and utilities that can aid that development. However, it is hard to use ROS in large-scale automation systems due to communication issues in a distributed setup, hence the development of ROS2. In this paper, a ROS2 based communication architecture is presented together with an industrial use-case of a collaborative and intelligent automation system.Comment: 9 pages, 4 figures, 3 tables, to be published in the proceedings of 29th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM2019), June 201
    • …
    corecore