22,249 research outputs found

    Merging Special Collections with GIS Technology to Enhance the User Experience

    Get PDF
    This analysis evaluates how PhillyHistory.org merged their unique special collection materials with geospatial-based progressive technology to challenge and educate the global community. A new generation of technologically savvy researchers has emerged that expect a more enhanced user experience than earlier generations. To meet these needs, collection managers are collaborating with community and local institutions to increase online access to materials; mixing best metadata practices with custom elements to create map mashups; and merging progressive GIS technology and geospatial based applications with their collections to enhance the user experience. The PhillyHistory.org website was analyzed to explore how they used various geospatial technology to create a new type of digital content management system based on geographical information and make their collections accessible via online software and mobile applications

    A Survey of Volunteered Open Geo-Knowledge Bases in the Semantic Web

    Full text link
    Over the past decade, rapid advances in web technologies, coupled with innovative models of spatial data collection and consumption, have generated a robust growth in geo-referenced information, resulting in spatial information overload. Increasing 'geographic intelligence' in traditional text-based information retrieval has become a prominent approach to respond to this issue and to fulfill users' spatial information needs. Numerous efforts in the Semantic Geospatial Web, Volunteered Geographic Information (VGI), and the Linking Open Data initiative have converged in a constellation of open knowledge bases, freely available online. In this article, we survey these open knowledge bases, focusing on their geospatial dimension. Particular attention is devoted to the crucial issue of the quality of geo-knowledge bases, as well as of crowdsourced data. A new knowledge base, the OpenStreetMap Semantic Network, is outlined as our contribution to this area. Research directions in information integration and Geographic Information Retrieval (GIR) are then reviewed, with a critical discussion of their current limitations and future prospects

    Adaptive Contract Design for Crowdsourcing Markets: Bandit Algorithms for Repeated Principal-Agent Problems

    Full text link
    Crowdsourcing markets have emerged as a popular platform for matching available workers with tasks to complete. The payment for a particular task is typically set by the task's requester, and may be adjusted based on the quality of the completed work, for example, through the use of "bonus" payments. In this paper, we study the requester's problem of dynamically adjusting quality-contingent payments for tasks. We consider a multi-round version of the well-known principal-agent model, whereby in each round a worker makes a strategic choice of the effort level which is not directly observable by the requester. In particular, our formulation significantly generalizes the budget-free online task pricing problems studied in prior work. We treat this problem as a multi-armed bandit problem, with each "arm" representing a potential contract. To cope with the large (and in fact, infinite) number of arms, we propose a new algorithm, AgnosticZooming, which discretizes the contract space into a finite number of regions, effectively treating each region as a single arm. This discretization is adaptively refined, so that more promising regions of the contract space are eventually discretized more finely. We analyze this algorithm, showing that it achieves regret sublinear in the time horizon and substantially improves over non-adaptive discretization (which is the only competing approach in the literature). Our results advance the state of art on several different topics: the theory of crowdsourcing markets, principal-agent problems, multi-armed bandits, and dynamic pricing.Comment: This is the full version of a paper in the ACM Conference on Economics and Computation (ACM-EC), 201
    corecore