93,110 research outputs found

    Maximum-Likelihood Sequence Detection of Multiple Antenna Systems over Dispersive Channels via Sphere Decoding

    Get PDF
    Multiple antenna systems are capable of providing high data rate transmissions over wireless channels. When the channels are dispersive, the signal at each receive antenna is a combination of both the current and past symbols sent from all transmit antennas corrupted by noise. The optimal receiver is a maximum-likelihood sequence detector and is often considered to be practically infeasible due to high computational complexity (exponential in number of antennas and channel memory). Therefore, in practice, one often settles for a less complex suboptimal receiver structure, typically with an equalizer meant to suppress both the intersymbol and interuser interference, followed by the decoder. We propose a sphere decoding for the sequence detection in multiple antenna communication systems over dispersive channels. The sphere decoding provides the maximum-likelihood estimate with computational complexity comparable to the standard space-time decision-feedback equalizing (DFE) algorithms. The performance and complexity of the sphere decoding are compared with the DFE algorithm by means of simulations

    An efficient error resilience scheme based on wyner-ziv coding for region-of-Interest protection of wavelet based video transmission

    Get PDF
    In this paper, we propose a bandwidth efficient error resilience scheme for wavelet based video transmission over wireless channel by introducing an additional Wyner-Ziv (WZ) stream to protect region of interest (ROI) in a frame. In the proposed architecture, the main video stream is compressed by a generic wavelet domain coding structure and passed through the error prone channel without any protection. Meanwhile, the predefined ROI area related wavelet coefficients obtained after an integer wavelet transform will be specially protected by WZ codec in an additional channel during transmission. At the decoder side, the error-prone ROI related wavelet coefficients will be used as side information to help decoding the WZ stream. Different size of WZ bit streams can be applied in order to meet different bandwidth condition and different requirement of end users. The simulation results clearly revealed that the proposed scheme has distinct advantages in saving bandwidth comparing with fully applied FEC algorithm to whole video stream and in the meantime offer the robust transmission over error prone channel for certain video applications

    The academic and industrial embrace of space-time methods

    Get PDF
    [Guest Editors introduction to: Special issue on space-time transmission, reception, coding and signal processing] Every episode of the classic 1966–1969 television series Star Trek begins with Captain Kirk’s (played by William Shatner) famous words : “Space: The final frontier….” While space may not be the final frontier for the information and communication theory community, it is proving to be an important and fruitful one. In the information theory community, the notion of space can be broadly defined as the simultaneous use of multiple, possibly coupled, channels. The notions of space–time and multiple-input multiple-output (MIMO) channels are therefore often used interchangeably. The connection between space and MIMO is most transparent when we view the multiple channels as created by two or more spatially separated antennas at a wireless transmitter or receiver. A large component of the current interest in space–time methods can be attributed to discoveries in the late 1980s and early 1990s that a rich wireless scattering environment can be beneficial when multiple antennas are used on a point-to-point link. We now know that adding antennas in a rich environment provides proportional increases in point-to-point data rates, without extra transmitted power or bandwidth

    Scalable video/image transmission using rate compatible PUM turbo codes

    Get PDF
    The robust delivery of video over emerging wireless networks poses many challenges due to the heterogeneity of access networks, the variations in streaming devices, and the expected variations in network conditions caused by interference and coexistence. The proposed approach exploits the joint optimization of a wavelet-based scalable video/image coding framework and a forward error correction method based on PUM turbo codes. The scheme minimizes the reconstructed image/video distortion at the decoder subject to a constraint on the overall transmission bitrate budget. The minimization is achieved by exploiting the rate optimization technique and the statistics of the transmission channel
    corecore