65 research outputs found

    Analysis and new constructions of generalized barycentric coordinates in 2D

    Get PDF
    Different coordinate systems allow to uniquely determine the position of a geometric element in space. In this dissertation, we consider a coordinate system that lets us determine the position of a two-dimensional point in the plane with respect to an arbitrary simple polygon. Coordinates of this system are called generalized barycentric coordinates in 2D and are widely used in computer graphics and computational mechanics. There exist many coordinate functions that satisfy all the basic properties of barycentric coordinates, but they differ by a number of other properties. We start by providing an extensive comparison of all existing coordinate functions and pointing out which important properties of generalized barycentric coordinates are not satisfied by these functions. This comparison shows that not all of existing coordinates have fully investigated properties, and we complete such a theoretical analysis for a particular one-parameter family of generalized barycentric coordinates for strictly convex polygons. We also perform numerical analysis of this family and show how to avoid computational instabilities near the polygon’s boundary when computing these coordinates in practice. We conclude this analysis by implementing some members of this family in the Computational Geometry Algorithm Library. In the second half of this dissertation, we present a few novel constructions of non-negative and smooth generalized barycentric coordinates defined over any simple polygon. In this context, we show that new coordinates with improved properties can be obtained by taking convex combinations of already existing coordinate functions and we give two examples of how to use such convex combinations for polygons without and with interior points. These new constructions have many attractive properties and perform better than other coordinates in interpolation and image deformation applications

    A fast numerical solver for local barycentric coordinates

    Get PDF
    The local barycentric coordinates (LBC), proposed in Zhang et al (2014), demonstrate good locality and can be used for local control on function value interpolation and shape deformation. However, it has no closed- form expression and must be computed by solving an optimization problem, which can be time-consuming especially for high-resolution models. In this paper, we propose a new technique to compute LBC efficiently. The new solver is developed based on two key insights. First, we prove that the non-negativity constraints in the original LBC formulation is not necessary, and can be removed without affecting the solution of the optimization problem. Furthermore, the removal of this constraint allows us to reformulate the computation of LBC as a convex constrained optimization for its gradients, followed by a fast integration to recover the coordinate values. The reformulated gradient optimization problem can be solved using ADMM, where each step is trivially parallelizable and does not involve global linear system solving, making it much more scalable and efficient than the original LBC solver. Numerical experiments verify the effectiveness of our technique on a large variety of models

    Construction of smooth maps with mean value coordinates

    No full text
    Bernstein polynomials are a classical tool in Computer Aided Design to create smooth maps with a high degree of local control. They are used for the construction of B\'ezier surfaces, free-form deformations, and many other applications. However, classical Bernstein polynomials are only defined for simplices and parallelepipeds. These can in general not directly capture the shape of arbitrary objects. Instead, a tessellation of the desired domain has to be done first. We construct smooth maps on arbitrary sets of polytopes such that the restriction to each of the polytopes is a Bernstein polynomial in mean value coordinates (or any other generalized barycentric coordinates). In particular, we show how smooth transitions between different domain polytopes can be ensured

    Addressing Integration Error for Polygonal Finite Elements Through Polynomial Projections: A Patch Test Connection

    Full text link
    Polygonal finite elements generally do not pass the patch test as a result of quadrature error in the evaluation of weak form integrals. In this work, we examine the consequences of lack of polynomial consistency and show that it can lead to a deterioration of convergence of the finite element solutions. We propose a general remedy, inspired by techniques in the recent literature of mimetic finite differences, for restoring consistency and thereby ensuring the satisfaction of the patch test and recovering optimal rates of convergence. The proposed approach, based on polynomial projections of the basis functions, allows for the use of moderate number of integration points and brings the computational cost of polygonal finite elements closer to that of the commonly used linear triangles and bilinear quadrilaterals. Numerical studies of a two-dimensional scalar diffusion problem accompany the theoretical considerations

    Polygonal blending splines in application to image processing

    Get PDF
    The paper proposes a novel method of image representation. The basic idea of the method is to transform color images to continuous parametric surfaces. The proposed technique is based on a class of special basis functions, defined on the polygon grid. Besides a exible and symmetric construction, these basis functions are strictly local and Cd-smooth on the entire domain. Having a number of unique features, the proposed representation can be used in various image processing tasks. The main purpose of this paper is to demonstrate the process of the image transformation and discuss possible applications of the presented technique

    Variational Barycentric Coordinates

    Full text link
    We propose a variational technique to optimize for generalized barycentric coordinates that offers additional control compared to existing models. Prior work represents barycentric coordinates using meshes or closed-form formulae, in practice limiting the choice of objective function. In contrast, we directly parameterize the continuous function that maps any coordinate in a polytope's interior to its barycentric coordinates using a neural field. This formulation is enabled by our theoretical characterization of barycentric coordinates, which allows us to construct neural fields that parameterize the entire function class of valid coordinates. We demonstrate the flexibility of our model using a variety of objective functions, including multiple smoothness and deformation-aware energies; as a side contribution, we also present mathematically-justified means of measuring and minimizing objectives like total variation on discontinuous neural fields. We offer a practical acceleration strategy, present a thorough validation of our algorithm, and demonstrate several applications.Comment: https://anadodik.github.io

    On the origin of nonclassicality in single systems

    Full text link
    In the framework of certain general probability theories of single systems, we identify various nonclassical features such as incompatibility, multiple pure-state decomposability, measurement disturbance, no-cloning and the impossibility of certain universal operations, with the non-simpliciality of the state space. This is shown to naturally suggest an underlying simplex as an ontological model. Contextuality turns out to be an independent nonclassical feature, arising from the intransitivity of compatibility.Comment: Close to the published versio

    Geometrically nonlinear polygonal finite element analysis of functionally graded porous plates

    Get PDF
    In this study, an efficient polygonal finite element method (PFEM) in combination with quadratic serendipity shape functions is proposed to study nonlinear static and dynamic responses of functionally graded (FG) plates with porosities. Two different porosity types including even and uneven distributions through the plate thickness are considered. The quadratic serendipity shape functions over arbitrary polygonal elements including triangular and quadrilateral ones, which are constructed based on a pairwise product of linear shape functions, are employed to interpolate the bending strains. Meanwhile, the shear strains are defined according to the Wachspress coordinates. By using the Timoshenko's beam to interpolate the assumption of the strain field along the edges of polygonal element, the shear locking phenomenon can be naturally eliminated. Furthermore, the C0–type higher-order shear deformation theory (C0–HSDT), in which two additional variables are included in the displacement field, significantly improves the accuracy of numerical results. The nonlinear equations of static and dynamic problems are solved by Newton–Raphson iterative procedure and by Newmark's integration scheme in association with the Picard methods, respectively. Through various numerical examples in which complex geometries and different boundary conditions are involved, the proposed approach yields more stable and accurate results than those generated using other existing approaches

    Serendipity Face and Edge VEM Spaces

    Full text link
    We extend the basic idea of Serendipity Virtual Elements from the previous case (by the same authors) of nodal (H1H^1-conforming) elements, to a more general framework. Then we apply the general strategy to the case of H(div)H(div) and H(curl)H(curl) conforming Virtual Element Methods, in two and three dimensions
    • …
    corecore