15 research outputs found

    Multiobjective optimization and decision making in engineering sciences

    Get PDF
    Real-world decision making problems in various fields including engineering sciences are becoming ever more challenging to address. The consideration of various competing criteria related to, for example, business, technical, workforce, safety and environmental aspects increases the complexity of decision making and leads to problems that feature multiple competing criteria. A key challenge in such problems is the identification of the most preferred trade-off solution(s) with respect to the competing criteria. Therefore, the effective combination of data, skills, and advanced engineering and management technologies is becoming a key asset to a company urging the need to rethink how to tackle modern decision making problems. This special issue focuses on the intersection between engineering, multiple criteria decision making, multiobjective optimization, and data science. The development of new models and algorithmic methods to solve such problems is in the focus as much as the application of these concepts to real problems. This special issue was motivated by the 25th International Conference on Multiple Criteria Decision Making (MCDM2019) held in Istanbul, Turkey, in 2019.nonPeerReviewe

    Data-Driven Surrogate-Assisted Multiobjective Evolutionary Optimization of a Trauma System

    Full text link

    Fourier Transform-based Surrogates for Permutation Problems

    Get PDF
    In the context of pseudo-Boolean optimization, surrogate functions based on the Walsh-Hadamard transform have been recently proposed with great success. It has been shown that lower-order components of the Walsh-Hadamard transform have usually a larger influence on the value of the objective function. Thus, creating a surrogate model using the lower-order components of the transform can provide a good approximation to the objective function. The Walsh-Hadamard transform in pseudo-Boolean optimization is a particularization in the binary representation of a Fourier transform over a finite group, precisely defined in the framework of group representation theory. Using this more general definition, it is possible to define a Fourier transform for the functions over permutations. We propose in this paper the use of surrogate functions based on the Fourier transforms over the permutation space. We check how similar the proposed surrogate models are to the original objective function and we also apply regression to learn a surrogate model based on the Fourier transform. The experimental setting includes two permutation problems for which the exact Fourier transform is unknown based on the problem parameters: the Asteroid Routing Problem and the Single Machine Total Weighted Tardiness.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Ministerio de Ciencia, Innovación y Universidades del Gobierno de España under grants PID 2020-116727RB-I00 and PRX21/00669, and by EU Horizon 2020 research and innovative program (grant 952215, TAILOR ICT-48 network). Thanks to the Supercomputing and Bioinnovation Center (SCBI) of Universidad de Málaga for their provision of computational resources and support

    A Secure Federated Data-Driven Evolutionary Multi-objective Optimization Algorithm

    Full text link
    Data-driven evolutionary algorithms usually aim to exploit the information behind a limited amount of data to perform optimization, which have proved to be successful in solving many complex real-world optimization problems. However, most data-driven evolutionary algorithms are centralized, causing privacy and security concerns. Existing federated Bayesian algorithms and data-driven evolutionary algorithms mainly protect the raw data on each client. To address this issue, this paper proposes a secure federated data-driven evolutionary multi-objective optimization algorithm to protect both the raw data and the newly infilled solutions obtained by optimizing the acquisition function conducted on the server. We select the query points on a randomly selected client at each round of surrogate update by calculating the acquisition function values of the unobserved points on this client, thereby reducing the risk of leaking the information about the solution to be sampled. In addition, since the predicted objective values of each client may contain sensitive information, we mask the objective values with Diffie-Hellmann-based noise, and then send only the masked objective values of other clients to the selected client via the server. Since the calculation of the acquisition function also requires both the predicted objective value and the uncertainty of the prediction, the predicted mean objective and uncertainty are normalized to reduce the influence of noise. Experimental results on a set of widely used multi-objective optimization benchmarks show that the proposed algorithm can protect privacy and enhance security with only negligible sacrifice in the performance of federated data-driven evolutionary optimization.Comment: This paper has been accepted by IEEE Transactions on Emerging Topics in Computational Intelligence journa

    A Random Forest Assisted Evolutionary Algorithm for Data-Driven Constrained Multi-Objective Combinatorial Optimization of Trauma Systems for publication

    Get PDF
    Many real-world optimization problems can be solved by using the data-driven approach only, simply because no analytic objective functions are available for evaluating candidate solutions. In this work, we address a class of expensive datadriven constrained multi-objective combinatorial optimization problems, where the objectives and constraints can be calculated only on the basis of large amount of data. To solve this class of problems, we propose to use random forests and radial basis function networks as surrogates to approximate both objective and constraint functions. In addition, logistic regression models are introduced to rectify the surrogate-assisted fitness evaluations and a stochastic ranking selection is adopted to further reduce the influences of the approximated constraint functions. Three variants of the proposed algorithm are empirically evaluated on multi-objective knapsack benchmark problems and two realworld trauma system design problems. Experimental results demonstrate that the variant using random forest models as the surrogates are effective and efficient in solving data-driven constrained multi-objective combinatorial optimization problems

    An Ensemble Surrogate-Based Framework for Expensive Multiobjective Evolutionary Optimization

    Get PDF
    Surrogate-assisted evolutionary algorithms (SAEAs) have become very popular for tackling computationally expensive multiobjective optimization problems (EMOPs), as the surrogate models in SAEAs can approximate EMOPs well, thereby reducing the time cost of the optimization process. However, with the increased number of decision variables in EMOPs, the prediction accuracy of surrogate models will deteriorate, which inevitably worsens the performance of SAEAs. To deal with this issue, this article suggests an ensemble surrogate-based framework for tackling EMOPs. In this framework, a global surrogate model is trained under the entire search space to explore the global area, while a number of surrogate submodels are trained under different search subspaces to exploit the subarea, so as to enhance the prediction accuracy and reliability. Moreover, a new infill sampling criterion is designed based on a set of reference vectors to select promising samples for training the models. To validate the generality and effectiveness of our framework, three state-of-the-art evolutionary algorithms [nondominated sorting genetic algorithm III (NSGA-III), multiobjective evolutionary algorithm based on decomposition with differential evolution (MOEA/D-DE) and reference vector-guided evolutionary algorithm (RVEA)] are embedded, which significantly improve their performance for solving most of the test EMOPs adopted in this article. When compared to some competitive SAEAs for solving EMOPs with up to 30 decision variables, the experimental results also validate the advantages of our approach in most cases

    Research on Information Flow Topology for Connected Autonomous Vehicles

    Get PDF
    Information flow topology plays a crucial role in connected autonomous vehicles (CAVs). It describes how CAVs communicate and exchange information with each other. It predominantly affects the platoon\u27s performance, including the convergence time, robustness, stability, and scalability. It also dramatically affects the controller design of CAVs. Therefore, studying information flow topology is necessary to ensure the platoon\u27s stability and improve its performance. Advanced sliding mode controllers and optimisation strategies for information flow topology are investigated in this project. Firstly, the impact of information flow topology on the platoon is studied regarding tracking ability, fuel economy and driving comfort. A Pareto optimal information flow topology offline searching approach is proposed using a non-dominated sorting genetic algorithm (NSGA-II) to improve the platoon\u27s overall performance while ensuring stability. Secondly, the concept of asymmetric control is introduced in the topological matrix. For a linear CAVs model with time delay, a sliding mode controller is designed to target the platoon\u27s tracking performance. Moreover, the Lyapunov analysis is used via Riccati inequality to guarantee the platoon\u27s internal stability and input-to-output string stability. Then NSGA-II is used to find the homogeneous Pareto optimal asymmetric degree to improve the platoon\u27s performance. A similar approach is designed for a nonlinear CAVs model to find the Pareto heterogeneous asymmetric degree and improve the platoon\u27s performance. Thirdly, switching topology is studied to better deal with the platoon\u27s communication problems. A two-step switching topology framework is introduced. In the first step, an offline Pareto optimal topology search with imperfect communication scenarios is applied. The platoon\u27s performance is optimised using a multi-objective evolutionary algorithm based on decomposition (MOEA/D). In the second step, the optimal topology is switched and selected from among the previously obtained Pareto optimal topology candidates in real-time to minimise the control cost. For a continuous nonlinear heterogeneous platoon with actuator faults, a sliding mode controller with an adaptive mechanism is developed. Then, the Lyapunov approach is applied to the platoon\u27s tracking error dynamics, ensuring the systems uniformly ultimately bounded stability and string stability. For a discrete nonlinear heterogeneous platoon with packet loss, a discrete sliding mode controller with a double power reaching law is designed, and a modified MOEA/D with two opposing adaptive mechanisms is applied in the two-step framework. Simulations verify all the proposed controllers and frameworks, and experiments also test some. The results show the proposed strategy\u27s effectiveness and superiority in optimising the platoon\u27s performance with multiple objectives

    Design Space Exploration and Resource Management of Multi/Many-Core Systems

    Get PDF
    The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends
    corecore