1 research outputs found

    Study of supercritical coal-fired power plant dynamic responses and control for grid code compliance

    Get PDF
    The thesis is concerned with the study of the dynamic responses of a supercritical coal-fired power plant via mathematical modelling and simulation. Supercritical technology leads to much more efficient energy conversion compared with subcritical power generation technology so it is considered to be a viable option from the economic and environmental aspects for replacement of aged thermal power plants in the United Kingdom. However there are concerns for the adoption of this technology as it is unclear whether the dynamic responses of supercritical power plants can meet the Great Britain Grid Code requirement in frequency responses and frequency control. To provide answers to the above concerns, the PhD research project is conducted with the following objectives: to study the dynamic responses of the power plant under different control modes in order to assess its compliance in providing the frequency control services specified by the Great Britain Grid Code; to evaluate and improve the performance of the existing control loops of the power plant simulator and in this regard a controller based on the Dynamic Matrix Control algorithm was designed to regulate the coal flow rate and another controller based on the Generalized Predictive Control algorithm was implemented to regulate the temperature of the superheated steam; to conduct an investigation regarding frequency control at the power plant level followed by an analysis of the frequency control requirements extracted from the Grid Codes of several European and non-European countries. The structure and operation of the supercritical power plant was intensively studied and presented. All the simulation tests presented in this thesis were carried out by the mean of a complex 600 megawatts power plant simulator developed in collaboration with Tsinghua University from Beijing, China. The study of the conducted simulation tests indicate that it is difficult for this type of power plant to comply with the frequency control requirements of the Great Britain Grid Code in its current control method. Therefore, it is essential to investigate more effective control strategies aiming at improving its dynamic responses. In the thesis, new Model Predictive Control power plant control strategies are developed and the performance of the control loops and consequently of the power plant are greatly improved through implementation of Model Predictive Control based controllers
    corecore