156 research outputs found

    ACINO: Second year report on dissemination and communication activities

    Get PDF
    This ACINO deliverable presents the communication and dissemination activities performed by the consortium during the first two years of the project. We have communicated using our website, Twitter account and by various communication actions: The website saw over 3000 unique visitors during the first year and over 4000 during the second year; The consortium Twitter account had 49 followers at the end of the first year and 80 at the end of the second year. We posted 50 tweets during the first year and 40 more during the second year; We also held a press release and an interview in a magazine during the first year, and had three more similar communication actions during the second year. The dissemination activities have been composed of participation in public events where the goals and concepts of ACINO were presented via publications, presentation, workshops, courses and demonstrations. Overall, over forty different dissemination activities have been performed: An article has been published in peer-reviewed, open access Journal of Green Engineering; Eighteen articles have been published in conferences: four during the first year and fourteen during the second. One of them was a post-deadline and six were invited papers; We have co-organised three workshops: the Workshop on Network Function Virtualization and Programmable Networks at EUCNC 2015, the first Workshop on Multi-Layer Network Orchestration (NetOrch) at ICTON 2016 and the stand-alone ONOS/CORD workshop; We have held 16 talks, tutorial, courses and demonstrations; Consortium members have won two prizes for work related to ACINO: a team of developers won the 3rd prize of the ONOS Build Hackathon, and Telefónica won the Best SDN-NFV solution award at the LTE and 5G World conference by presenting a solution in which Sedona Systems was involved; We have contributed to six IETF standardisation documents and done some implementation and test of these standards. We have contributed to two open source projects: the NetPhony and ONOS controllers, with the implementation of main features being accepted and merged to the core code of these open source projects. Finally, the project has devised detailed plans for its dissemination activities for the last year of the project. We have: Confirmed plans for the organisation of a workshop, the second edition of the NetOrch workshop, co-located with the ICTON conference; A solid plan for continued dissemination in conferences (already five accepted conference papers, five talk invitations and a list of conferences of interest) and in peer-reviewed journals, with one article accepted for publication in the Journal of Lightwave Technology, two articles under review and plans for four more; Some more planned contribution to open source projects

    Software-defined elastic optical networks

    Full text link

    Exhaustive Search for Optimal Offline Spectrum Assignment in Elastic Optical Networks

    Get PDF
    Heuristic-based approaches are widely deployed in solving Spectrum Assignment problem. This causes the results to be unreliable in some test cases when the results are very far from the lowerbound. This paper presents an exhaustive search approach that starts with an initial seed of a solution achieved by a heuristic-based algorithm called “Longest First Fit” (LFF) and tries all possible permutations starting from this initial seed. The algorithm skips some branches and all its descendant permutations if it meets certain criteria that guarantees that those permutations will not lead to a better result. The experimental results show that the new algorithm has succeeded in achieving the lower-bound in 93% of the randomly generated test cases while the heuristic solver LFF can achieve 65%. The algorithm achieves these results in a reasonable running time of less than 10 seconds

    Modular architecture providing convergent and ubiquitous intelligent connectivity for networks beyond 2030

    Get PDF
    The transition of the networks to support forthcoming beyond 5G (B5G) and 6G services introduces a number of important architectural challenges that force an evolution of existing operational frameworks. Current networks have introduced technical paradigms such as network virtualization, programmability and slicing, being a trend known as network softwarization. Forthcoming B5G and 6G services imposing stringent requirements will motivate a new radical change, augmenting those paradigms with the idea of smartness, pursuing an overall optimization on the usage of network and compute resources in a zero-trust environment. This paper presents a modular architecture under the concept of Convergent and UBiquitous Intelligent Connectivity (CUBIC), conceived to facilitate the aforementioned transition. CUBIC intends to investigate and innovate on the usage, combination and development of novel technologies to accompany the migration of existing networks towards Convergent and Ubiquitous Intelligent Connectivity (CUBIC) solutions, leveraging Artificial Intelligence (AI) mechanisms and Machine Learning (ML) tools in a totally secure environment

    Minimum Cost Design of Cellular Networks in Rural Areas with UAVs, Optical Rings, Solar Panels and Batteries

    Get PDF
    Bringing the cellular connectivity in rural zones is a big challenge, due to the large installation costs that are incurred when a legacy cellular network based on fixed Base Stations (BSs) is deployed. To tackle this aspect, we consider an alternative architecture composed of UAV-based BSs to provide cellular coverage, ground sites to connect the UAVs with the rest of the network, Solar Panels (SPs) and batteries to recharge the UAVs and to power the ground sites, and a ring of optical fiber links to connect the installed sites. We then target the minimization of the installation costs for the considered UAV-based cellular architecture, by taking into account the constraints of UAVs coverage, SPs energy consumption, levels of the batteries and the deployment of the optical ring. After providing the problem formulation, we derive an innovative methodology to ensure that a single ring of installed optical fibers is deployed. Moreover, we propose a new algorithm, called DIARIZE, to practically tackle the problem. Our results, obtained over a set of representative rural scenarios, show that DIARIZE performs very close to the optimal solution, and in general outperforms a reference design based on fixed BSs

    Heuristic for Lowering Electricity Costs for Routing in Optical Data Center Networks

    Get PDF
    Optical data centers consume a large quantity of energy and the cost of that energy has a significant contribution to the operational cost in data centers. The amount of electricity consumption in data centers and their related costs are increasing day by day. Data centers are geographically distributed all around the continents and the growing numbers of data replicas have made it possible to find more cost effective network routing. Besides flat-rate prices, today, there are companies which offers real-time pricing. In order to address the energy consumption cost problem, we propose an energy efficient routing scheme to find least cost path to the replicas based on real-time pricing model called energy price aware routing (EPAR). Our research considers anycast data transmission model to find the suitable replica as well as the fixed window traffic allocation model for demand request to reduce the energy consumption cost of data center networks

    Resource orchestration strategies with retrials for latency-sensitive network slicing over distributed telco clouds

    Get PDF
    The new radio technologies (i.e. 5G and beyond) will allow a new generation of innovative services operated by vertical industries (e.g. robotic cloud, autonomous vehicles, etc.) with more stringent QoS requirements, especially in terms of end-to-end latency. Other technological changes, such as Network Function Virtualization (NFV) and Software-Defined Networking (SDN), will bring unique service capabilities to networks by enabling flexible network slicing that can be tailored to the needs of vertical services. However, effective orchestration strategies need to be put in place to offer latency minimization while also maximizing resource utilization for telco providers to address vertical requirements and increase their revenue. Looking at this objective, this paper addresses a latency-sensitive orchestration problem by proposing different strategies for the coordinated selection of virtual resources (network, computational, and storage resources) in distributed DCs while meeting vertical requirements (e.g., bandwidth demand) for network slicing. Three orchestration strategies are presented to minimize latency or the blocking probability through effective resource utilization. To further reduce the slice request blocking, orchestration strategies also encompass a retrial mechanism applied to rejected slice requests. Regarding latency, two components were considered, namely processing and network latency. An extensive set of simulations was carried out over a wide and composite telco cloud infrastructure in which different types of data centers coexist characterized by a different network location, size, and processing capacity. The results compare the behavior of the strategies in addressing latency minimization and service request fulfillment, also considering the impact of the retrial mechanism.This work was supported in part by the Department of Excellence in Robotics and Artificial Intelligence by Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) to Scuola Superiore Sant’Anna, and in part by the Project 5GROWTH under Agreement 856709
    corecore