75,192 research outputs found

    Special issue on the theory and practice of differential privacy

    Get PDF
    This special issue presents papers based on contributions to the first international workshop on the “Theory and Practice of Differential Privacy” (TPDP) held in London, UK, 18 April 2015, as part of the European joint conference on Theory And Practice of Software (ETAPS). Differential privacy is a mathematically rigorous definition of the privacy protection provided by a data release mechanism: it offers a strong guaranteed bound on what can be learned about a user as a result of participating in a differentially private data analysis. Researchers in differential privacy come from several areas of computer science, including algorithms, programming languages, security, databases and machine learning, as well as from several areas of statistics and data analysis. The workshop was intended to be an occasion for researchers from these different research areas to discuss the recent developments in the theory and practice of differential privacy. The program of the workshop included 10 contributed talks, 1 invited speaker and 1 joint invited speaker with the workshop “Hot Issues in Security Principles and Trust” (HotSpot 2016). Participants at the workshop were invited to submit papers to this special issue. Six papers were accepted, most of which directly reflect talks presented at the workshop

    Context-Aware Generative Adversarial Privacy

    Full text link
    Preserving the utility of published datasets while simultaneously providing provable privacy guarantees is a well-known challenge. On the one hand, context-free privacy solutions, such as differential privacy, provide strong privacy guarantees, but often lead to a significant reduction in utility. On the other hand, context-aware privacy solutions, such as information theoretic privacy, achieve an improved privacy-utility tradeoff, but assume that the data holder has access to dataset statistics. We circumvent these limitations by introducing a novel context-aware privacy framework called generative adversarial privacy (GAP). GAP leverages recent advancements in generative adversarial networks (GANs) to allow the data holder to learn privatization schemes from the dataset itself. Under GAP, learning the privacy mechanism is formulated as a constrained minimax game between two players: a privatizer that sanitizes the dataset in a way that limits the risk of inference attacks on the individuals' private variables, and an adversary that tries to infer the private variables from the sanitized dataset. To evaluate GAP's performance, we investigate two simple (yet canonical) statistical dataset models: (a) the binary data model, and (b) the binary Gaussian mixture model. For both models, we derive game-theoretically optimal minimax privacy mechanisms, and show that the privacy mechanisms learned from data (in a generative adversarial fashion) match the theoretically optimal ones. This demonstrates that our framework can be easily applied in practice, even in the absence of dataset statistics.Comment: Improved version of a paper accepted by Entropy Journal, Special Issue on Information Theory in Machine Learning and Data Scienc
    corecore