4,237 research outputs found

    Millimeter-wave Wireless LAN and its Extension toward 5G Heterogeneous Networks

    Full text link
    Millimeter-wave (mmw) frequency bands, especially 60 GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60 GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60 GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase the total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is the distributed antenna type architecture to realize centralized coordination, while the other is an autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.Comment: 18 pages, 24 figures, accepted, invited paper

    Robust Pilot Decontamination Based on Joint Angle and Power Domain Discrimination

    Full text link
    We address the problem of noise and interference corrupted channel estimation in massive MIMO systems. Interference, which originates from pilot reuse (or contamination), can in principle be discriminated on the basis of the distributions of path angles and amplitudes. In this paper we propose novel robust channel estimation algorithms exploiting path diversity in both angle and power domains, relying on a suitable combination of the spatial filtering and amplitude based projection. The proposed approaches are able to cope with a wide range of system and topology scenarios, including those where, unlike in previous works, interference channel may overlap with desired channels in terms of multipath angles of arrival or exceed them in terms of received power. In particular we establish analytically the conditions under which the proposed channel estimator is fully decontaminated. Simulation results confirm the overall system gains when using the new methods.Comment: 14 pages, 5 figures, accepted for publication in IEEE Transactions on Signal Processin

    Improving the system capacity of broadband services using multiple high-altitude platforms

    Get PDF
    A method of significantly improving the capacity of high-altitude platform (HAP) communications networks operating in the millimeter-wave bands is presented. It is shown how constellations of HAPs can share a common frequency allocation by exploiting the directionality of the user antenna. The system capacity of such constellations is critically affected by the minimum angular separation of the HAPs and the sidelobe level of the user antenna. For typical antenna beamwidths of approximately 5/spl deg/ an inter-HAP spacing of 4 km is sufficient to deliver optimum performance. The aggregate bandwidth efficiency is evaluated, both theoretically using the Shannon equation, and using practical modulation and coding schemes, for multiple HAP configurations delivering either single or multiple cells. For the user antenna beamwidths used, it is shown that capacity increases are commensurate with the increase in the number of platforms, up to 10 HAPs. For increases beyond this the choice of constellation strategy becomes increasingly important

    Waveform Design for 5G and beyond Systems

    Get PDF
    5G traffic has very diverse requirements with respect to data rate, delay, and reliability. The concept of using multiple OFDM numerologies adopted in the 5G NR standard will likely meet these multiple requirements to some extent. However, the traffic is radically accruing different characteristics and requirements when compared with the initial stage of 5G, which focused mainly on high-speed multimedia data applications. For instance, applications such as vehicular communications and robotics control require a highly reliable and ultra-low delay. In addition, various emerging M2M applications have sparse traffic with a small amount of data to be delivered. The state-of-the-art OFDM technique has some limitations when addressing the aforementioned requirements at the same time. Meanwhile, numerous waveform alternatives, such as FBMC, GFDM, and UFMC, have been explored. They also have their own pros and cons due to their intrinsic waveform properties. Hence, it is the opportune moment to come up with modification/variations/combinations to the aforementioned techniques or a new waveform design for 5G systems and beyond. The aim of this Special Issue is to provide the latest research and advances in the field of waveform design for 5G systems and beyond

    A novel design approach for 5G massive MIMO and NB-IoT green networks using a hybrid Jaya-differential evolution algorithm

    Get PDF
    Our main objective is to reduce power consumption by responding to the instantaneous bit rate demand by the user for 4th Generation (4G) and 5th Generation (5G) Massive MIMO network configurations. Moreover, we present and address the problem of designing green LTE networks with the Internet of Things (IoT) nodes. We consider the new NarrowBand-IoT (NB-IoT) wireless technology that will emerge in current and future access networks. In this context, we apply emerging evolutionary algorithms in the context of green network design. We investigate three different cases to show the performance of the new proposed algorithm, namely the 4G, 5G Massive MIMO, and the NB-IoT technologies. More specifically, we investigate the Teaching-Learning-Optimization (TLBO), the Jaya algorithm, the self-adaptive differential evolution jDE algorithm, and other hybrid algorithms. We introduce a new hybrid algorithm named Jaya-jDE that uses concepts from both Jaya and jDE algorithms in an effective way. The results show that 5G Massive MIMO networks require about 50% less power consumption than the 4G ones, and the NB-IoT in-band deployment requires about 10% less power than guard-band deployment. Moreover, Jaya-jDE emerges as the best algorithm based on the results

    Programmable Active Mirror: A Scalable Decentralized Router

    Get PDF
    This work proposes and demonstrates the scalable router array that eliminates the internal centralization of conventional arrays, unlocking scalability, and the potential for a system composed of spatially separated elements that do not share a common timing reference. Architectural variations are presented, and their specific tradeoffs are discussed. The general operation, steering capabilities, signal and noise considerations, and timing control advantages are evaluated through analysis, simulation, and measurements. An element-level CMOS radio frequency integrated circuit (RFIC) is developed and used to demonstrate a four-element 25 GHz prototype router. The RFIC's programmable true time delay (TTD) control is used to correct path-length-difference-induced intersymbol interference (ISI) and improve a rerouted 270-Mb/s 64-QAM constellation from a completely scrambled state to an EVM of 4% rms (-28 dB). The prototype scalable router's concurrent dual-beam capabilities are demonstrated by simultaneously steering two full power beams at 24.9 and 25 GHz in two different directions in a free-space electromagnetic setup

    Filtered multi-carrier modulations for industrial wireless communications based on cognitive radio

    Get PDF
    Doktoretza-tesi honetako helburu nagusia, hari gabeko komunikazio industrialetarako fidagarritasun maila onargarria eman dezakeen maila fisikoko modulazio bat aurkitzea da. Eremu industrialetako radio bidezko kanaletan ematen diren komunikazioetarako baldintza bereziki aurkakoak direla eta, helburu hori lortzea benetako erronkatzat jo liteke. Gainera, modulazio horrek \Radio Cognitiva" deritzoten teknikekin bateragarria izan beharra dauka, hauek hari gabeko komunikazioen fidagarritasuna hobetzeko gaitasuna baitute. Bibliografian oinarrituz, gaur egungo baliabideekin hari gabeko komunikazio industrial kasu ugariri konponbidea emateko aukera badela ondoriozta genezake, baina ez kasu guztiei ordea. Hari gabeko kanalen egoera bereziki aurkakoa denerako eta komunikazio sistemek denbora muga bereziki zorrotzak bete behar dituztenerako, ezta erantzun nahikoa ona eman lezakeen hari gabeko komunikazio sistema industrialik bibliografia zientifikoan. Hori dela eta, doktoretza tesi honetan, \Radio Cognitiva" delakoa eta 5G-rako aurreikusita dauden filtro bankuetan oinarrituriko modulazio multigarraiatzaileak bezalako teknologia hasiberrietara jotzen dugu, aurrez aipaturiko arazoari konponbide berriak bilatu nahian. Bibliografian dauden filtro bankuetan oinarrituriko modulazio multi-garraiatzaileak aztertu eta ondoren beraien egokitasuna ebaluatzen dugu, kanal dispertsiboen aurkako sendotasuna eta \Radio Cognitiva" teknikekin izan lezaketen bateragarritasuna irizpide hartuz. Ebaluaketa horretan oinarrituz, doktoretza-tesi honetan \Radio Cognitiva" teknikekin bateragarria den WCP-COQAM proposatzen dugu modulazio industrial gisa. Modulazio teknika berau erakusteaz gain, bibliografian eskuragarri ez dauden WCP-COQAM-rentzat sinkronizazio eta kanal estimazio teknikak ere aurkezten ditugu.El objetivo principal de esta tesis doctoral consiste en encontrar una modulación de capa física capaz de proporcionar robustez y fiabilidad suficientes a sistemas de comunicaciones inalámbricas industriales. Esto supone un desafío, dadas las adversas condiciones del canal inalámbrico propias de entornos industriales. Además, dicha modulación debería presentar una alta compatibilidad con las técnicas de Radio Cognitiva, debido al potencial de éstas para mejorar la fiabilidad de las comunicaciones inalámbricas. Basándonos en la bibliografía, concluimos que las soluciones presentes en el estado del arte actual cubren una amplia variedad de escenarios dentro de las comunicaciones inalámbricas industriales, pero no todas. Para los escenarios con canales altamente dispersivos y requerimientos de tiempo especialmente estrictos, no existe ninguna solución en la industria ni dentro de la bibliografía científica. En esta tesis doctoral nos centramos en tecnologías incipientes como la Radio Cognitiva y las modulaciones multi-portadora con bancos de filtros para 5G para tratar de buscar nuevas soluciones al problema anteriormente descrito. Por lo tanto, analizamos algunas de las técnicas multi-portadora con bancos de filtros presentes en la bibliografía científica y las evaluamos basándonos en su robustez frente a canales altamente dispersivos y su compatibilidad con la Radio Cognitiva. Basándonos en dicha evaluación, proponemosWCP-COQAM como posible candidata a modulación industrial compatible con Radio Cognitiva. Además de la propia técnica de modulación, presentamos métodos de sincronización y estimación de canal para la misma que no se encuentran presentes en el estado del arte.The main goal of this doctoral thesis is to find a physical layer modulation able to provide high enough robustness and reliability levels for wireless industrial communications systems. Considering the harsh wireless channel conditions of industrial environments, that goal implies a considerable challenge. Besides, this modulation should be highly compatible with Cognitive Radio techniques, due to their potential to improve the reliability of wireless communications. Based on the bibliography, we conclude that the existent solutions in the current state of the art cover a wide range of wireless industrial communications scenarios, but not all of them. There is no solution, neither in the industry nor in the scientific bibliography, for those scenarios involving highly dispersive wireless channels and particularly stringent timeliness requirements. In this doctoral thesis, we focus on upcoming technologies such as Cognitive Radio and multi-carrier modulations based on filter banks for 5G, in order to search new solutions for the aforementioned problem. Therefore, we analyse some of the multi-carrier modulations based on filter banks of the scientific bibliography and we evaluate them in terms of robustness against highly dispersive channels and in terms of compatibility with Cognitive Radio. In this doctoral thesis we propose the modulation WCP-COQAM as possible candidate for industrial wireless modulation and compatible with Cognitive Radio. In addition to the modulation technique itself, we also introduce some synchronization and channel estimation techniques which are not present in the state of the art

    Channel Simulators for MmWave and 5G Applications

    Get PDF
    Along with the tremendous growth of extremely high traffic demand, 5G radio access technology, is becoming the core component to support massive and multifarious connected devices and real-time, and to offer high reliability wireless communications with high data rate. And millimeter-wave (mmWave) range with a huge frequency spectrum from 3 GHz to 300GHz will perfectly meet the multi-gigabit communicative demand. However, mmWave usage also generally brings new challenges, such as coping with high attenuation or path losses. As an effective method to evaluate the performance of the new concept in communication networks, nowadays, several channel models and simulators have been proposed and developped, such as, WINNER, COST-2100, IMT-Advanced, METIS, NYU Wire-less and QuaDRiGa etc. The thesis goals have been to offer an overview of the advantages and disadvantages of various mmWave channel models existing in the literature, based on the published literature, and to compare based on simulations some of the main features of two selected open-source models, namely the WINNER 2 and QuaDRiGa channel models. In the future, more mmWave channel models are planned to be tested and simulated for a better understanding of their suitability for various mmWave applications
    corecore