87 research outputs found

    Computational Creativity and Music Generation Systems: An Introduction to the State of the Art

    Get PDF
    Computational Creativity is a multidisciplinary field that tries to obtain creative behaviors from computers. One of its most prolific subfields is that of Music Generation (also called Algorithmic Composition or Musical Metacreation), that uses computational means to compose music. Due to the multidisciplinary nature of this research field, it is sometimes hard to define precise goals and to keep track of what problems can be considered solved by state-of-the-art systems and what instead needs further developments. With this survey, we try to give a complete introduction to those who wish to explore Computational Creativity and Music Generation. To do so, we first give a picture of the research on the definition and the evaluation of creativity, both human and computational, needed to understand how computational means can be used to obtain creative behaviors and its importance within Artificial Intelligence studies. We then review the state of the art of Music Generation Systems, by citing examples for all the main approaches to music generation, and by listing the open challenges that were identified by previous reviews on the subject. For each of these challenges, we cite works that have proposed solutions, describing what still needs to be done and some possible directions for further research

    Evaluation of Musical Creativity and Musical Metacreation Systems

    Get PDF
    The field of computational creativity, including musical metacreation, strives to develop artificial systems that are capable of demonstrating creative behavior or producing creative artefacts. But the claim of creativity is often assessed, subjectively only on the part of the researcher and not objectively at all. This article provides theoretical motivation for more systematic evaluation of musical metacreation and computationally creative systems and presents an overview of current methods used to assess human and machine creativity that may be adapted for this purpose. In order to highlight the need for a varied set of evaluation tools, a distinction is drawn among three types of creative systems: those that are purely generative, those that contain internal or external feedback, and those that are capable of reflection and self-reflection. To address the evaluation of each of these aspects, concrete examples of methods and techniques are suggested to help researchers (1) evaluate their systems' creative process and generated artefacts, and test their impact on the perceptual, cognitive, and affective states of the audience, and (2) build mechanisms for reflection into the creative system, including models of human perception and cognition, to endow creative systems with internal evaluative mechanisms to drive self-reflective processes. The first type of evaluation can be considered external to the creative system and may be employed by the researcher to both better understand the efficacy of their system and its impact and to incorporate feedback into the system. Here we take the stance that understanding human creativity can lend insight to computational approaches, and knowledge of how humans perceive creative systems and their output can be incorporated into artificial agents as feedback to provide a sense of how a creation will impact the audience. The second type centers around internal evaluation, in which the system is able to reason about its own behavior and generated output. We argue that creative behavior cannot occur without feedback and reflection by the creative/metacreative system itself. More rigorous empirical testing will allow computational and metacreative systems to become more creative by definition and can be used to demonstrate the impact and novelty of particular approaches

    Automated manipulation of musical grammars to support episodic interactive experiences

    Get PDF
    Music is used to enhance the experience of participants and visitors in a range of settings including theatre, film, video games, installations and theme parks. These experiences may be interactive, contrastingly episodic and with variable duration. Hence, the musical accompaniment needs to be dynamic and to transition between contrasting music passages. In these contexts, computer generation of music may be necessary for practical reasons including distribution and cost. Automated and dynamic composition algorithms exist but are not well-suited to a highly interactive episodic context owing to transition-related problems including discontinuity, abruptness, extended repetitiveness and lack of musical granularity and musical form. Addressing these problems requires algorithms capable of reacting to participant behaviour and episodic change in order to generate formic music that is continuous and coherent during transitions. This thesis presents the Form-Aware Transitioning and Recovering Algorithm (FATRA) for realtime, adaptive, form-aware music generation to provide continuous musical accompaniment in episodic context. FATRA combines stochastic grammar adaptation and grammar merging in real time. The Form-Aware Transition Engine (FATE) implementation of FATRA estimates the time-occurrence of upcoming narrative transitions and generates a harmonic sequence as narrative accompaniment with a focus on coherent, form-aware music transitioning between music passages of contrasting character. Using FATE, FATRA has been evaluated in three perceptual user studies: An audioaugmented real museum experience, a computer-simulated museum experience and a music-focused online study detached from narrative. Music transitions of FATRA were benchmarked against common approaches of the video game industry, i.e. crossfading and direct transitions. The participants were overall content with the music of FATE during their experience. Transitions of FATE were significantly favoured against the crossfading benchmark and competitive against the direct transitions benchmark, without statistical significance for the latter comparison. In addition, technical evaluation demonstrated capabilities of FATRA including form generation, repetitiveness avoidance and style/form recovery in case of falsely predicted narrative transitions. Technical results along with perceptual preference and competitiveness against the benchmark approaches are deemed as positive and the structural advantages of FATRA, including form-aware transitioning, carry considerable potential for future research

    MorpheuS: Generating Structured Music with Constrained Patterns and Tension

    Get PDF
    Automatic music generation systems have gained in popularity and sophistication as advances in cloud computing have enabled large-scale complex computations such as deep models and optimization algorithms on personal devices. Yet, they still face an important challenge, that of long-term structure, which is key to conveying a sense of musical coherence. We present the MorpheuS music generation system designed to tackle this problem. MorpheuS' novel framework has the ability to generate polyphonic pieces with a given tension profile and long- and short-term repeated pattern structures. A mathematical model for tonal tension quantifies the tension profile and state-of-the-art pattern detection algorithms extract repeated patterns in a template piece. An efficient optimization metaheuristic, variable neighborhood search, generates music by assigning pitches that best fit the prescribed tension profile to the template rhythm while hard constraining long-term structure through the detected patterns. This ability to generate affective music with specific tension profile and long-term structure is particularly useful in a game or film music context. Music generated by the MorpheuS system has been performed live in concerts.Comment: IEEE Transactions on Affective Computing. PP(99

    Creative Autonomy in a Simple Interactive Music System

    Get PDF
    Interactive music systems always exhibit an amount of autonomy in the creative process. The capacity to generate material that is primary, contextual and novel to the outcome is proposed here as the bare minimum for creative autonomy in these systems. Assumptions are evaluated using Video Interactive VST Orchestra, a system that generates music through sound processing in interplay with a user. The system accepts audio and video live inputs — a camera and a microphone that capture the interplay of a musician, typically. Mapping of the variance in the musician’s physical motion to the sound processing allows identifying salience in the interaction and the system as autonomous. A case study is presented to provide evidence of creative autonomy in this simple, yet highly effective system

    A Functional Taxonomy of Music Generation Systems

    Get PDF
    Digital advances have transformed the face of automatic music generation since its beginnings at the dawn of computing. Despite the many breakthroughs, issues such as the musical tasks targeted by different machines and the degree to which they succeed remain open questions. We present a functional taxonomy for music generation systems with reference to existing systems. The taxonomy organizes systems according to the purposes for which they were designed. It also reveals the inter-relatedness amongst the systems. This design-centered approach contrasts with predominant methods-based surveys and facilitates the identification of grand challenges to set the stage for new breakthroughs.Comment: survey, music generation, taxonomy, functional survey, survey, automatic composition, algorithmic compositio

    Limitations from Assumptions in Generative Music Evaluation

    Get PDF
    The merit of a given piece of music is difficult to evaluate objectively; the merit of a computational system that creates such a piece of music may be even more so. In this article, we propose that there may be limitations resulting from assumptions made in the evaluation of autonomous compositional or creative systems. The article offers a review of computational creativity, evolutionary compositional methods and current methods of evaluating creativity. We propose that there are potential limitations in the discussion and evaluation of generative systems from two standpoints. First, many systems only consider evaluating the final artefact produced by the system whereas computational creativity is defined as a behaviour exhibited by a system. Second, artefacts tend to be evaluated according to recognised human standards. We propose that while this may be a natural assumption, this focus on human-like or human-based preferences could be limiting the potential and generality of future music generating or creative-AI systems

    Generation of Two-Voice Imitative Counterpoint from Statistical Models

    Get PDF
    Generating new music based on rules of counterpoint has been deeply studied in music informatics. In this article, we try to go further, exploring a method for generating new music based on the style of Palestrina, based on combining statistical generation and pattern discovery. A template piece is used for pattern discovery, and the patterns are selected and organized according to a probabilistic distribution, using horizontal viewpoints to describe melodic properties of events. Once the template is covered with patterns, two-voice counterpoint in a florid style is generated into those patterns using a first-order Markov model. The template method solves the problem of coherence and imitation never addressed before in previous research in counterpoint music generation. For constructing the Markov model, vertical slices of pitch and rhythm are compiled over a large corpus of dyads from Palestrina masses. The template enforces different restrictions that filter the possible paths through the generation process. A double backtracking algorithm is implemented to handle cases where no solutions are found at some point within a generation path. Results are evaluated by both information content and listener evaluation, and the paper concludes with a proposed relationship between musical quality and information content. Part of this research has been presented at SMC 2016 in Hamburg, Germany

    Computational Creativity and Live Algorithms

    Get PDF
    We examine the field of algorithmic composition from the perspective of computational creativity. We begin by introducing the idea of computational creativity as a philosophical perspective. Next, we introduce a method for consideration of the properties of creative systems, the Creative Systems Framework (CSF). We then use the CSF as a starting point for discussion of a system of comparison specific to algorithmic composition as an artistic and technical practice. Finally, we sketch a road map for future developments in algorithmic composition and live coding, in these terms
    • …
    corecore