1,173 research outputs found

    LIINUS/SERPIL: a design study for interferometric imaging spectroscopy at the LBT

    Get PDF
    LIINUS/SERPIL is a design study to augment LBTs interferometric beam combiner camera LINC-NIRVANA with imaging spectroscopy. The FWHM of the interferometric main beam at 1.5 micron will be about 10 mas, offering unique imaging and spectroscopic capabilities well beyond the angular resolution of current 8-10m telescopes. At 10 mas angular scale, e.g., one resolution element at the distance of the Galactic Center corresponds to the average diameter of the Pluto orbit (79 AU), hence the size of the solar system. Taking advantage of the LBT interferometric beam with an equivalent maximum diameter of 23 m, LIINUS/SERPIL is an ideal precursor instrument for (imaging) spectrographs at extremely large full aperture telescopes. LIINUS/SERPIL will be built upon the LINC-NIRVANA hardware and LIINUS/SERPIL could potentially be developed on a rather short timescale. The study investigates several concepts for the optical as well as for the mechanical design. We present the scientific promises of such an instrument together with the current status of the design study.Comment: 12 pages, SPIE conference proceeding, Orlando, 200

    A compact, multi-pixel parametric light source

    Full text link
    The features of a compact, single pass, multi-pixel optical parametric generator are discussed. Several hundreds of independent high spatial-quality tunable ultrashort pulses were produced by pumping a bulk lithium triborate crystal with an array of tightly focussed intense beams. The array of beams was produced by shining a microlenses array with a large pump beam. Overall conversion efficiency to signal and idler up to 30% of the pump beam has been reported. Shot-to-shot energy fluctuation down to 3% was achieved for the generated radiation.Comment: 11 pages, 6 figures, submitted to "Optics Communications

    Motion and disparity estimation with self adapted evolutionary strategy in 3D video coding

    Get PDF
    Real world information, obtained by humans is three dimensional (3-D). In experimental user-trials, subjective assessments have clearly demonstrated the increased impact of 3-D pictures compared to conventional flat-picture techniques. It is reasonable, therefore, that we humans want an imaging system that produces pictures that are as natural and real as things we see and experience every day. Three-dimensional imaging and hence, 3-D television (3DTV) are very promising approaches expected to satisfy these desires. Integral imaging, which can capture true 3D color images with only one camera, has been seen as the right technology to offer stress-free viewing to audiences of more than one person. In this paper, we propose a novel approach to use Evolutionary Strategy (ES) for joint motion and disparity estimation to compress 3D integral video sequences. We propose to decompose the integral video sequence down to viewpoint video sequences and jointly exploit motion and disparity redundancies to maximize the compression using a self adapted ES. A half pixel refinement algorithm is then applied by interpolating macro blocks in the previous frame to further improve the video quality. Experimental results demonstrate that the proposed adaptable ES with Half Pixel Joint Motion and Disparity Estimation can up to 1.5 dB objective quality gain without any additional computational cost over our previous algorithm.1Furthermore, the proposed technique get similar objective quality compared to the full search algorithm by reducing the computational cost up to 90%

    Depth mapping of integral images through viewpoint image extraction with a hybrid disparity analysis algorithm

    Get PDF
    Integral imaging is a technique capable of displaying 3–D images with continuous parallax in full natural color. It is one of the most promising methods for producing smooth 3–D images. Extracting depth information from integral image has various applications ranging from remote inspection, robotic vision, medical imaging, virtual reality, to content-based image coding and manipulation for integral imaging based 3–D TV. This paper presents a method of generating a depth map from unidirectional integral images through viewpoint image extraction and using a hybrid disparity analysis algorithm combining multi-baseline, neighbourhood constraint and relaxation strategies. It is shown that a depth map having few areas of uncertainty can be obtained from both computer and photographically generated integral images using this approach. The acceptable depth maps can be achieved from photographic captured integral images containing complicated object scene

    Biofunctionalized all-polymer photonic lab on a chip with integrated solid-state light emitter

    Get PDF
    A photonic lab on a chip (PhLOC), comprising a solid-state light emitter (SSLE) aligned with a biofunctionalized optofluidic multiple internal reflection (MIR) system, is presented. The SSLE is obtained by filling a microfluidic structure with a phenyltrimethoxysilane (PhTMOS) aqueous sol solution containing a fluorophore organic dye. After curing, the resulting xerogel solid structure retains the emitting properties of the fluorophore, which is evenly distributed in the xerogel matrix. Photostability studies demonstrate that after a total dose (at l = 365 nm) greater than 24 J/cm2, the xerogel emission decay is only 4.1%. To re-direct the emitted light, the SSLE includes two sets of air mirrors that surround the xerogel. Emission mapping of the SSLE demonstrates that alignment variations of 150 mm (between the SSLE and the external pumping light source) provide fluctuations in emitted light smaller than 5%. After this verification, the SSLE is monolithically implemented with a MIR, forming the PhLOC. Its performance is assessed by measuring quinolone yellow, obtaining a limit of detection (LOD) of (0.60 +/- 0.01) mM. Finally, the MIR is selectively biofunctionalized with horseradish peroxidase (HRP) for the detection of hydrogen peroxide (H2O2) target analyte, obtaining a LOD of (0.7 +/- 0.1) mM for H2O2, confirming, for the first time, that solid-state xerogel-based emitters can be massively implemented in biofunctionalized PhLOCs

    White dwarfs with hydrogen-deficient atmospheres and the dark matter content of the Galaxy

    Get PDF
    The nature of the several microlensing events observed by the MACHO team towards the Large Magellanic Cloud (LMC) is still a subject of debate. Low-mass substellar objects and stars with masses larger than ~M_{sun} have been ruled out as major components of a Massive Astrophysical Compact Halo Object (MACHO) Galactic halo, while stars of half a solar mass seem to be viable candidates. Main sequence stars have been already discarded, and there are tight restrictions on the role played by white dwarfs with hydrogen-dominated atmospheres. In this paper we evaluate the contribution to the dark matter content of the Galaxy of white dwarfs with hydrogen-deficient atmospheres. For this purpose we use a Monte Carlo simulator which incorporates up-to-date evolutionary sequences of white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres. We also take into account detailed descriptions of the thick disk and the halo of our Galaxy as well as of a reliable model of the LMC. We find that the contribution of white dwarfs with hydrogen-deficient atmospheres moderately increases the theoretical estimate of the optical depth with respect to the value obtained when only hydrogen-rich white dwarfs are considered. We also find that the contribuiton of the thick disk population of white dwarfs is comparable to the halo contribution. However, the contributions of both the halo and the thick disk white-dwarf populations are still insufficient to explain the number of events observed by the MACHO team. Finally, we find that the contribution to the halo dark matter of the entire population under study is less than 10% at the 95% conficence level.Comment: 12 pages, 5 figures, accepted for publication in A&
    • 

    corecore