53,299 research outputs found

    Editorial for FGCS Special issue on “Time-critical Applications on Software-defined Infrastructures”

    Get PDF
    Performance requirements in many applications can often be modelled as constraints related to time, for example, the span of data processing for disaster early warning [1], latency in live event broadcasting [2], and jitter during audio/video conferences [3]. These time constraints are often treated either in an “as fast as possible” manner, such as sensitive latencies in high-performance computing or communication tasks, or in a “timeliness” way where tasks have to be finished within a given window in real-time systems, as classified in [4]. To meet the required time constraints, one has to carefully analyse time constraints, engineer and integrate system components, and optimise the scheduling for computing and communication tasks. The development of a time-critical application is thus time-consuming and costly. During the past decades, the infrastructure technologies of computing, storage and networking have made tremendous progress. Besides the capacity and performance of physical devices, the virtualisation technologies offer effective resource management and isolation at different levels, such as Java Virtual Machines at the application level, Dockers at the operating system level, and Virtual Machines at the whole system level. Moreover, the network embedding [5] and software-defined networking [6] provide network-level virtualisation and control that enable a new paradigm of infrastructure, where infrastructure resources can be virtualised, isolated, and dynamically customised based on application needs. The software-defined infrastructures, including Cloud, Fog, Edge, software-defined networking and network function virtualisation, emerge nowadays as new environments for distributed applications with time-critical application requirements, but also face challenges in effectively utilising the advanced infrastructure features in system engineering and dynamic control. This special issue on “time-critical applications and software-defined infrastructures” focuses on practical aspects of the design, development, customisation and performance-oriented operation of such applications for Clouds and other distributed environments

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Special issue on green radio

    Get PDF
    • …
    corecore