85,558 research outputs found

    PID and PID-like controller design by pole assignment within D-stable regions

    Get PDF
    This paper presents a new PID and PID-like controller design method that permits the designer to control the desired dynamic performance of a closed-loop system by first specifying a set of desired D-stable regions in the complex plane and then running a numerical optimisation algorithm to find the controller parameters such that all the roots of the closed-loop system are within the specified regions. This method can be used for stable and unstable plants with high order degree, for plants with time delay, for controller with more than three design parameters, and for various controller configurations. It also allows a unified treatment of the controller design for both continuous and discrete systems. Examples and comparative simulation results are pro-vided to illustrate its merit

    On the Selection of Tuning Methodology of FOPID Controllers for the Control of Higher Order Processes

    Get PDF
    In this paper, a comparative study is done on the time and frequency domain tuning strategies for fractional order (FO) PID controllers to handle higher order processes. A new fractional order template for reduced parameter modeling of stable minimum/non-minimum phase higher order processes is introduced and its advantage in frequency domain tuning of FOPID controllers is also presented. The time domain optimal tuning of FOPID controllers have also been carried out to handle these higher order processes by performing optimization with various integral performance indices. The paper highlights on the practical control system implementation issues like flexibility of online autotuning, reduced control signal and actuator size, capability of measurement noise filtration, load disturbance suppression, robustness against parameter uncertainties etc. in light of the above tuning methodologies.Comment: 27 pages, 10 figure

    Adaptive performance optimization for large-scale traffic control systems

    Get PDF
    In this paper, we study the problem of optimizing (fine-tuning) the design parameters of large-scale traffic control systems that are composed of distinct and mutually interacting modules. This problem usually requires a considerable amount of human effort and time to devote to the successful deployment and operation of traffic control systems due to the lack of an automated well-established systematic approach. We investigate the adaptive fine-tuning algorithm for determining the set of design parameters of two distinct mutually interacting modules of the traffic-responsive urban control (TUC) strategy, i.e., split and cycle, for the large-scale urban road network of the city of Chania, Greece. Simulation results are presented, demonstrating that the network performance in terms of the daily mean speed, which is attained by the proposed adaptive optimization methodology, is significantly better than the original TUC system in the case in which the aforementioned design parameters are manually fine-tuned to virtual perfection by the system operators

    Regularized system identification using orthonormal basis functions

    Full text link
    Most of existing results on regularized system identification focus on regularized impulse response estimation. Since the impulse response model is a special case of orthonormal basis functions, it is interesting to consider if it is possible to tackle the regularized system identification using more compact orthonormal basis functions. In this paper, we explore two possibilities. First, we construct reproducing kernel Hilbert space of impulse responses by orthonormal basis functions and then use the induced reproducing kernel for the regularized impulse response estimation. Second, we extend the regularization method from impulse response estimation to the more general orthonormal basis functions estimation. For both cases, the poles of the basis functions are treated as hyperparameters and estimated by empirical Bayes method. Then we further show that the former is a special case of the latter, and more specifically, the former is equivalent to ridge regression of the coefficients of the orthonormal basis functions.Comment: 6 pages, final submission of an contribution for European Control Conference 2015, uploaded on March 20, 201

    Automatic tuning of Free Electron Lasers

    Full text link
    Existing FEL facilities often suffer from stability issues: so electron orbit, transverse electron optics, electron bunch compression and other parameters have to be readjusted often to account for drifts in performance of various components. The tuning procedures typically employed in operation are often manual and lengthy. We have been developing a combination of model-free and model-based automatic tuning methods to meet the needs of present and upcoming XFEL facilities. Our approach has been implemented at FLASH \cite{flash} to achieve automatic SASE tuning using empirical control of orbit, electron optics and bunch compression. In this paper we describe our approach to empirical tuning, the software which implements it, and the results of using it at FLASH. We also discuss the potential of using machine learning and model-based techniques in tuning methods

    Nonlinear Attitude Filtering: A Comparison Study

    Get PDF
    This paper contains a concise comparison of a number of nonlinear attitude filtering methods that have attracted attention in the robotics and aviation literature. With the help of previously published surveys and comparison studies, the vast literature on the subject is narrowed down to a small pool of competitive attitude filters. Amongst these filters is a second-order optimal minimum-energy filter recently proposed by the authors. Easily comparable discretized unit quaternion implementations of the selected filters are provided. We conduct a simulation study and compare the transient behaviour and asymptotic convergence of these filters in two scenarios with different initialization and measurement errors inspired by applications in unmanned aerial robotics and space flight. The second-order optimal minimum-energy filter is shown to have the best performance of all filters, including the industry standard multiplicative extended Kalman filter (MEKF)
    corecore