77,236 research outputs found

    Application and support for high-performance simulation

    Get PDF
    types: Editorial CommentHigh performance simulation that supports sophisticated simulation experimentation and optimization can require non-trivial amounts of computing power. Advanced distributed computing techniques and systems found in areas such as High Performance Computing (HPC), High Throughput Computing (HTC), grid computing, cloud computing and e-Infrastructures are needed to provide effectively the computing power needed for the high performance simulation of large and complex models. In simulation there has been a long tradition of translating and adopting advances in distributed computing as shown by contributions from the parallel and distributed simulation community. This special issue brings together a contemporary collection of work showcasing original research in the advancement of simulation theory and practice with distributed computing. This special issue is divided into two parts. This first part focuses on research pertaining to high performance simulation that support a range of applications including the study of epidemics, social networks, urban mobility and real-time embedded and cyber-physical systems. Compared to other simulation techniques agent-based modeling and simulation is relatively new; however, it is increasingly being used to study large-scale problems. Agent-based simulations present challenges for high performance simulation as they can be complex and computationally demanding, and it is therefore not surprising that this special issue includes several articles on the high performance simulation of such systems.Research Councils U

    Shallow Water Equations in Hydraulics: Modeling, Numerics and Applications

    Get PDF
    This Special Issue aims to provide a forum for the latest advances in hydraulic modeling based on the use of shallow water and related models as well as their novel application in practical engineering. Original contributions, including those in but not limited to the following areas, will be considered for publication: new conceptual models and applications, flood inundation and routing, sediment transport and morphodynamic modelling, pollutant transport in water, irrigation and drainage modeling, numerical simulation in hydraulics, novel numerical methods for the shallow water equations and extended models, case studies, and high-performance computing

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Investigating grid computing technologies for use with commercial simulation packages

    Get PDF
    As simulation experimentation in industry become more computationally demanding, grid computing can be seen as a promising technology that has the potential to bind together the computational resources needed to quickly execute such simulations. To investigate how this might be possible, this paper reviews the grid technologies that can be used together with commercial-off-the-shelf simulation packages (CSPs) used in industry. The paper identifies two specific forms of grid computing (Public Resource Computing and Enterprise-wide Desktop Grid Computing) and the middleware associated with them (BOINC and Condor) as being suitable for grid-enabling existing CSPs. It further proposes three different CSP-grid integration approaches and identifies one of them to be the most appropriate. It is hoped that this research will encourage simulation practitioners to consider grid computing as a technologically viable means of executing CSP-based experiments faster
    • …
    corecore