46,051 research outputs found

    Solving eigenvalue problems on curved surfaces using the Closest Point Method

    Full text link
    Eigenvalue problems are fundamental to mathematics and science. We present a simple algorithm for determining eigenvalues and eigenfunctions of the Laplace--Beltrami operator on rather general curved surfaces. Our algorithm, which is based on the Closest Point Method, relies on an embedding of the surface in a higher-dimensional space, where standard Cartesian finite difference and interpolation schemes can be easily applied. We show that there is a one-to-one correspondence between a problem defined in the embedding space and the original surface problem. For open surfaces, we present a simple way to impose Dirichlet and Neumann boundary conditions while maintaining second-order accuracy. Convergence studies and a series of examples demonstrate the effectiveness and generality of our approach

    Solving polynomial eigenvalue problems by means of the Ehrlich-Aberth method

    Full text link
    Given the n×nn\times n matrix polynomial P(x)=i=0kPixiP(x)=\sum_{i=0}^kP_i x^i, we consider the associated polynomial eigenvalue problem. This problem, viewed in terms of computing the roots of the scalar polynomial detP(x)\det P(x), is treated in polynomial form rather than in matrix form by means of the Ehrlich-Aberth iteration. The main computational issues are discussed, namely, the choice of the starting approximations needed to start the Ehrlich-Aberth iteration, the computation of the Newton correction, the halting criterion, and the treatment of eigenvalues at infinity. We arrive at an effective implementation which provides more accurate approximations to the eigenvalues with respect to the methods based on the QZ algorithm. The case of polynomials having special structures, like palindromic, Hamiltonian, symplectic, etc., where the eigenvalues have special symmetries in the complex plane, is considered. A general way to adapt the Ehrlich-Aberth iteration to structured matrix polynomial is introduced. Numerical experiments which confirm the effectiveness of this approach are reported.Comment: Submitted to Linear Algebra App
    corecore