185,375 research outputs found

    Guest editors’ preface to the special issue devoted to the 2nd International Conference “Numerical Computations: Theory and Algorithms”, June 19–25, 2016, Pizzo Calabro, Italy

    Get PDF
    This special issue of the Journal of Global Optimization contains twelve high-quality research papers devoted to different aspects of global optimization such as theory, numerical methods and real-life applications. The papers included in this special issue are based on the presentations carefully selected by the guest editors among the talks delivered at the 2nd International Conference “Numerical Computations: Theory and Algorithms (NUMTA)” held in June 19–25, 2016 in Pizzo Calabro, Italy (the first NUMTA conference took place in Falerna, Italy in 2013). The NUMTA 2016 has been organized by the University of Calabria, Rende (CS), Italy, in cooperation with the Society for Industrial and Applied Mathematics, USA. The guest editors actively participated in the organization of the conference: the Program Committee of the NUMTA 2016 was chaired by Yaroslav D. Sergeyev, in their turn, Renato De Leone and Anatoly Zhigljavsky took part in the Program Committee. The goal of the NUMTA 2016 was creation of a multidisciplinary round table for an open discussion on numerical modeling nature by using traditional and emerging computational paradigms. Participants of this conference discussed several aspects of numerical computations and modeling from foundations of mathematics and computer science to advanced numerical techniques. A large part of presentations has been dedicated to optimization. Selected papers presented at the conference in the field of numerical analysis and respective applications have been published in the special issue of the international journal Applied Mathematics and Computation, Volume 318 (2018). In its turn, the present special issue contains articles dealing with global optimization. Let us give a brief description of the papers included in this special issue

    Guest Editorial: Nonlinear Optimization of Communication Systems

    Get PDF
    Linear programming and other classical optimization techniques have found important applications in communication systems for many decades. Recently, there has been a surge in research activities that utilize the latest developments in nonlinear optimization to tackle a much wider scope of work in the analysis and design of communication systems. These activities involve every “layer” of the protocol stack and the principles of layered network architecture itself, and have made intellectual and practical impacts significantly beyond the established frameworks of optimization of communication systems in the early 1990s. These recent results are driven by new demands in the areas of communications and networking, as well as new tools emerging from optimization theory. Such tools include the powerful theories and highly efficient computational algorithms for nonlinear convex optimization, together with global solution methods and relaxation techniques for nonconvex optimization

    Survey on Combinatorial Register Allocation and Instruction Scheduling

    Full text link
    Register allocation (mapping variables to processor registers or memory) and instruction scheduling (reordering instructions to increase instruction-level parallelism) are essential tasks for generating efficient assembly code in a compiler. In the last three decades, combinatorial optimization has emerged as an alternative to traditional, heuristic algorithms for these two tasks. Combinatorial optimization approaches can deliver optimal solutions according to a model, can precisely capture trade-offs between conflicting decisions, and are more flexible at the expense of increased compilation time. This paper provides an exhaustive literature review and a classification of combinatorial optimization approaches to register allocation and instruction scheduling, with a focus on the techniques that are most applied in this context: integer programming, constraint programming, partitioned Boolean quadratic programming, and enumeration. Researchers in compilers and combinatorial optimization can benefit from identifying developments, trends, and challenges in the area; compiler practitioners may discern opportunities and grasp the potential benefit of applying combinatorial optimization

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    Adaptive multimodal continuous ant colony optimization

    Get PDF
    Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization algorithms in preserving high diversity, this paper intends to extend ant colony optimization algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ant colony optimization algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima

    Multimodal estimation of distribution algorithms

    Get PDF
    Taking the advantage of estimation of distribution algorithms (EDAs) in preserving high diversity, this paper proposes a multimodal EDA. Integrated with clustering strategies for crowding and speciation, two versions of this algorithm are developed, which operate at the niche level. Then these two algorithms are equipped with three distinctive techniques: 1) a dynamic cluster sizing strategy; 2) an alternative utilization of Gaussian and Cauchy distributions to generate offspring; and 3) an adaptive local search. The dynamic cluster sizing affords a potential balance between exploration and exploitation and reduces the sensitivity to the cluster size in the niching methods. Taking advantages of Gaussian and Cauchy distributions, we generate the offspring at the niche level through alternatively using these two distributions. Such utilization can also potentially offer a balance between exploration and exploitation. Further, solution accuracy is enhanced through a new local search scheme probabilistically conducted around seeds of niches with probabilities determined self-adaptively according to fitness values of these seeds. Extensive experiments conducted on 20 benchmark multimodal problems confirm that both algorithms can achieve competitive performance compared with several state-of-the-art multimodal algorithms, which is supported by nonparametric tests. Especially, the proposed algorithms are very promising for complex problems with many local optima

    Using Functional Programming to recognize Named Structure in an Optimization Problem: Application to Pooling

    Get PDF
    Branch-and-cut optimization solvers typically apply generic algorithms, e.g., cutting planes or primal heuristics, to expedite performance for many mathematical optimization problems. But solver software receives an input optimization problem as vectors of equations and constraints containing no structural information. This article proposes automatically detecting named special structure using the pattern matching features of functional programming. Specifically, we deduce the industrially-relevant nonconvex nonlinear Pooling Problem within a mixed-integer nonlinear optimization problem and show that we can uncover pooling structure in optimization problems which are not pooling problems. Previous work has shown that preprocessing heuristics can find network structures; we show that we can additionally detect nonlinear pooling patterns. Finding named structures allows us to apply, to generic optimization problems, cutting planes or primal heuristics developed for the named structure. To demonstrate the recognition algorithm, we use the recognized structure to apply primal heuristics to a test set of standard pooling problems
    • …
    corecore