1,192 research outputs found

    Multi-talker Speech Separation with Utterance-level Permutation Invariant Training of Deep Recurrent Neural Networks

    Full text link
    In this paper we propose the utterance-level Permutation Invariant Training (uPIT) technique. uPIT is a practically applicable, end-to-end, deep learning based solution for speaker independent multi-talker speech separation. Specifically, uPIT extends the recently proposed Permutation Invariant Training (PIT) technique with an utterance-level cost function, hence eliminating the need for solving an additional permutation problem during inference, which is otherwise required by frame-level PIT. We achieve this using Recurrent Neural Networks (RNNs) that, during training, minimize the utterance-level separation error, hence forcing separated frames belonging to the same speaker to be aligned to the same output stream. In practice, this allows RNNs, trained with uPIT, to separate multi-talker mixed speech without any prior knowledge of signal duration, number of speakers, speaker identity or gender. We evaluated uPIT on the WSJ0 and Danish two- and three-talker mixed-speech separation tasks and found that uPIT outperforms techniques based on Non-negative Matrix Factorization (NMF) and Computational Auditory Scene Analysis (CASA), and compares favorably with Deep Clustering (DPCL) and the Deep Attractor Network (DANet). Furthermore, we found that models trained with uPIT generalize well to unseen speakers and languages. Finally, we found that a single model, trained with uPIT, can handle both two-speaker, and three-speaker speech mixtures

    Deep attractor network for single-microphone speaker separation

    Full text link
    Despite the overwhelming success of deep learning in various speech processing tasks, the problem of separating simultaneous speakers in a mixture remains challenging. Two major difficulties in such systems are the arbitrary source permutation and unknown number of sources in the mixture. We propose a novel deep learning framework for single channel speech separation by creating attractor points in high dimensional embedding space of the acoustic signals which pull together the time-frequency bins corresponding to each source. Attractor points in this study are created by finding the centroids of the sources in the embedding space, which are subsequently used to determine the similarity of each bin in the mixture to each source. The network is then trained to minimize the reconstruction error of each source by optimizing the embeddings. The proposed model is different from prior works in that it implements an end-to-end training, and it does not depend on the number of sources in the mixture. Two strategies are explored in the test time, K-means and fixed attractor points, where the latter requires no post-processing and can be implemented in real-time. We evaluated our system on Wall Street Journal dataset and show 5.49\% improvement over the previous state-of-the-art methods.Comment: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP

    Single Channel auditory source separation with neural network

    Get PDF
    Although distinguishing diļ¬€erent sounds in noisy environment is a relative easy task for human, source separation has long been extremely diļ¬ƒcult in audio signal processing. The problem is challenging for three reasons: the large variety of sound type, the abundant mixing conditions and the unclear mechanism to distinguish sources, especially for similar sounds. In recent years, the neural network based methods achieved impressive successes in various problems, including the speech enhancement, where the task is to separate the clean speech out of the noise mixture. However, the current deep learning based source separator does not perform well on real recorded noisy speech, and more importantly, is not applicable in a more general source separation scenario such as overlapped speech. In this thesis, we ļ¬rstly propose extensions for the current mask learning network, for the problem of speech enhancement, to ļ¬x the scale mismatch problem which is usually occurred in real recording audio. We solve this problem by combining two additional restoration layers in the existing mask learning network. We also proposed a residual learning architecture for the speech enhancement, further improving the network generalization under diļ¬€erent recording conditions. We evaluate the proposed speech enhancement models on CHiME 3 data. Without retraining the acoustic model, the best bi-direction LSTM with residue connections yields 25.13% relative WER reduction on real data and 34.03% WER on simulated data. Then we propose a novel neural network based model called ā€œdeep clusteringā€ for more general source separation tasks. We train a deep network to assign contrastive embedding vectors to each time-frequency region of the spectrogram in order to implicitly predict the segmentation labels of the target spectrogram from the input mixtures. This yields a deep network-based analogue to spectral clustering, in that the embeddings form a low-rank pairwise aļ¬ƒnity matrix that approximates the ideal aļ¬ƒnity matrix, while enabling much faster performance. At test time, the clustering step ā€œdecodesā€ the segmentation implicit in the embeddings by optimizing K-means with respect to the unknown assignments. Experiments on single channel mixtures from multiple speakers show that a speaker-independent model trained on two-speaker and three speakers mixtures can improve signal quality for mixtures of held-out speakers by an average over 10dB. We then propose an extension for deep clustering named ā€œdeep attractorā€ network that allows the system to perform eļ¬ƒcient end-to-end training. In the proposed model, attractor points for each source are ļ¬rstly created the acoustic signals which pull together the time-frequency bins corresponding to each source by ļ¬nding the centroids of the sources in the embedding space, which are subsequently used to determine the similarity of each bin in the mixture to each source. The network is then trained to minimize the reconstruction error of each source by optimizing the embeddings. We showed that this frame work can achieve even better results. Lastly, we introduce two applications of the proposed models, in singing voice separation and the smart hearing aid device. For the former, a multi-task architecture is proposed, which combines the deep clustering and the classiļ¬cation based network. And a new state of the art separation result was achieved, where the signal to noise ratio was improved by 11.1dB on music and 7.9dB on singing voice. In the application of smart hearing aid device, we combine the neural decoding with the separation network. The system ļ¬rstly decodes the userā€™s attention, which is further used to guide the separator for the targeting source. Both objective study and subjective study show the proposed system can accurately decode the attention and significantly improve the user experience

    Recognizing Multi-talker Speech with Permutation Invariant Training

    Full text link
    In this paper, we propose a novel technique for direct recognition of multiple speech streams given the single channel of mixed speech, without first separating them. Our technique is based on permutation invariant training (PIT) for automatic speech recognition (ASR). In PIT-ASR, we compute the average cross entropy (CE) over all frames in the whole utterance for each possible output-target assignment, pick the one with the minimum CE, and optimize for that assignment. PIT-ASR forces all the frames of the same speaker to be aligned with the same output layer. This strategy elegantly solves the label permutation problem and speaker tracing problem in one shot. Our experiments on artificially mixed AMI data showed that the proposed approach is very promising.Comment: 5 pages, 6 figures, InterSpeech201
    • ā€¦
    corecore