1,551 research outputs found

    Tone classification of syllable -segmented Thai speech based on multilayer perceptron

    Get PDF
    Thai is a monosyllabic and tonal language. Thai makes use of tone to convey lexical information about the meaning of a syllable. Thai has five distinctive tones and each tone is well represented by a single F0 contour pattern. In general, a Thai syllable with a different tone has a different lexical meaning. Thus, to completely recognize a spoken Thai syllable, a speech recognition system has not only to recognize a base syllable but also to correctly identify a tone. Hence, tone classification of Thai speech is an essential part of a Thai speech recognition system.;In this study, a tone classification of syllable-segmented Thai speech which incorporates the effects of tonal coarticulation, stress and intonation was developed. Automatic syllable segmentation, which performs the segmentation on the training and test utterances into syllable units, was also developed. The acoustical features including fundamental frequency (F0), duration, and energy extracted from the processing syllable and neighboring syllables were used as the main discriminating features. A multilayer perceptron (MLP) trained by backpropagation method was employed to classify these features. The proposed system was evaluated on 920 test utterances spoken by five male and three female Thai speakers who also uttered the training speech. The proposed system achieved an average accuracy rate of 91.36%

    Unifying Amplitude and Phase Analysis: A Compositional Data Approach to Functional Multivariate Mixed-Effects Modeling of Mandarin Chinese

    Full text link
    Mandarin Chinese is characterized by being a tonal language; the pitch (or F0F_0) of its utterances carries considerable linguistic information. However, speech samples from different individuals are subject to changes in amplitude and phase which must be accounted for in any analysis which attempts to provide a linguistically meaningful description of the language. A joint model for amplitude, phase and duration is presented which combines elements from Functional Data Analysis, Compositional Data Analysis and Linear Mixed Effects Models. By decomposing functions via a functional principal component analysis, and connecting registration functions to compositional data analysis, a joint multivariate mixed effect model can be formulated which gives insights into the relationship between the different modes of variation as well as their dependence on linguistic and non-linguistic covariates. The model is applied to the COSPRO-1 data set, a comprehensive database of spoken Taiwanese Mandarin, containing approximately 50 thousand phonetically diverse sample F0F_0 contours (syllables), and reveals that phonetic information is jointly carried by both amplitude and phase variation.Comment: 49 pages, 13 figures, small changes to discussio

    Rhythmic unit extraction and modelling for automatic language identification

    Get PDF
    International audienceThis paper deals with an approach to Automatic Language Identification based on rhythmic modelling. Beside phonetics and phonotactics, rhythm is actually one of the most promising features to be considered for language identification, even if its extraction and modelling are not a straightforward issue. Actually, one of the main problems to address is what to model. In this paper, an algorithm of rhythm extraction is described: using a vowel detection algorithm, rhythmic units related to syllables are segmented. Several parameters are extracted (consonantal and vowel duration, cluster complexity) and modelled with a Gaussian Mixture. Experiments are performed on read speech for 7 languages (English, French, German, Italian, Japanese, Mandarin and Spanish) and results reach up to 86 ± 6% of correct discrimination between stress-timed mora-timed and syllable-timed classes of languages, and to 67 ± 8% percent of correct language identification on average for the 7 languages with utterances of 21 seconds. These results are commented and compared with those obtained with a standard acoustic Gaussian mixture modelling approach (88 ± 5% of correct identification for the 7-languages identification task)

    A Hidden Conditional Random Field-Based Approach for Thai Tone Classification

    Get PDF
    In Thai, tonal information is a crucial component for identifying the lexical meaning of a word. Consequently, Thai tone classification can obviously improve performance of Thai speech recognition system. In this article, we therefore reported our study of Thai tone classification. Based on our investigation, most of Thai tone classification studies relied on statistical machine learning approaches, especially the Artificial Neural Network (ANN)-based approach and the Hidden Markov Model (HMM)-based approach. Although both approaches gave reasonable performances, they had some limitations due to their mathematical models. We therefore introduced a novel approach for Thai tone classification using a Hidden Conditional Random Field (HCRF)-based approach. In our study, we also investigated tone configurations involving tone features, frequency scaling and normalization techniques in order to fine tune performances of Thai tone classification. Experiments were conducted in both isolated word scenario and continuous speech scenario. Results showed that the HCRF-based approach with the feature F_dF_aF, ERB-rate scaling and a z-score normalization technique yielded the highest performance and outperformed a baseline using the ANN-based approach, which had been reported as the best for the Thai tone classification, in both scenarios. The best performance of HCRF-based approach provided the error rate reduction of 10.58% and 12.02% for isolated word scenario and continuous speech scenario respectively when comparing with the best result of baselines

    A computational model for studying L1’s effect on L2 speech learning

    Get PDF
    abstract: Much evidence has shown that first language (L1) plays an important role in the formation of L2 phonological system during second language (L2) learning process. This combines with the fact that different L1s have distinct phonological patterns to indicate the diverse L2 speech learning outcomes for speakers from different L1 backgrounds. This dissertation hypothesizes that phonological distances between accented speech and speakers' L1 speech are also correlated with perceived accentedness, and the correlations are negative for some phonological properties. Moreover, contrastive phonological distinctions between L1s and L2 will manifest themselves in the accented speech produced by speaker from these L1s. To test the hypotheses, this study comes up with a computational model to analyze the accented speech properties in both segmental (short-term speech measurements on short-segment or phoneme level) and suprasegmental (long-term speech measurements on word, long-segment, or sentence level) feature space. The benefit of using a computational model is that it enables quantitative analysis of L1's effect on accent in terms of different phonological properties. The core parts of this computational model are feature extraction schemes to extract pronunciation and prosody representation of accented speech based on existing techniques in speech processing field. Correlation analysis on both segmental and suprasegmental feature space is conducted to look into the relationship between acoustic measurements related to L1s and perceived accentedness across several L1s. Multiple regression analysis is employed to investigate how the L1's effect impacts the perception of foreign accent, and how accented speech produced by speakers from different L1s behaves distinctly on segmental and suprasegmental feature spaces. Results unveil the potential application of the methodology in this study to provide quantitative analysis of accented speech, and extend current studies in L2 speech learning theory to large scale. Practically, this study further shows that the computational model proposed in this study can benefit automatic accentedness evaluation system by adding features related to speakers' L1s.Dissertation/ThesisDoctoral Dissertation Speech and Hearing Science 201

    A syllable-based investigation of coarticulation

    Get PDF
    Coarticulation has been long investigated in Speech Sciences and Linguistics (KĂŒhnert & Nolan, 1999). This thesis explores coarticulation through a syllable based model (Y. Xu, 2020). First, it is hypothesised that consonant and vowel are synchronised at the syllable onset for the sake of reducing temporal degrees of freedom, and such synchronisation is the essence of coarticulation. Previous efforts in the examination of CV alignment mainly report onset asynchrony (Gao, 2009; Shaw & Chen, 2019). The first study of this thesis tested the synchrony hypothesis using articulatory and acoustic data in Mandarin. Departing from conventional approaches, a minimal triplet paradigm was applied, in which the CV onsets were determined through the consonant and vowel minimal pairs, respectively. Both articulatory and acoustical results showed that CV articulation started in close temporal proximity, supporting the synchrony hypothesis. The second study extended the research to English and syllables with cluster onsets. By using acoustic data in conjunction with Deep Learning, supporting evidence was found for co-onset, which is in contrast to the widely reported c-center effect (Byrd, 1995). Secondly, the thesis investigated the mechanism that can maximise synchrony – Dimension Specific Sequential Target Approximation (DSSTA), which is highly relevant to what is commonly known as coarticulation resistance (Recasens & Espinosa, 2009). Evidence from the first two studies show that, when conflicts arise due to articulation requirements between CV, the CV gestures can be fulfilled by the same articulator on separate dimensions simultaneously. Last but not least, the final study tested the hypothesis that resyllabification is the result of coarticulation asymmetry between onset and coda consonants. It was found that neural network based models could infer syllable affiliation of consonants, and those inferred resyllabified codas had similar coarticulatory structure with canonical onset consonants. In conclusion, this thesis found that many coarticulation related phenomena, including local vowel to vowel anticipatory coarticulation, coarticulation resistance, and resyllabification, stem from the articulatory mechanism of the syllable

    Survey of Mandarin Chinese Speech Recognition Techniques

    Get PDF
    • 

    corecore