17,155 research outputs found

    Online Localization and Tracking of Multiple Moving Speakers in Reverberant Environments

    Get PDF
    We address the problem of online localization and tracking of multiple moving speakers in reverberant environments. The paper has the following contributions. We use the direct-path relative transfer function (DP-RTF), an inter-channel feature that encodes acoustic information robust against reverberation, and we propose an online algorithm well suited for estimating DP-RTFs associated with moving audio sources. Another crucial ingredient of the proposed method is its ability to properly assign DP-RTFs to audio-source directions. Towards this goal, we adopt a maximum-likelihood formulation and we propose to use an exponentiated gradient (EG) to efficiently update source-direction estimates starting from their currently available values. The problem of multiple speaker tracking is computationally intractable because the number of possible associations between observed source directions and physical speakers grows exponentially with time. We adopt a Bayesian framework and we propose a variational approximation of the posterior filtering distribution associated with multiple speaker tracking, as well as an efficient variational expectation-maximization (VEM) solver. The proposed online localization and tracking method is thoroughly evaluated using two datasets that contain recordings performed in real environments.Comment: IEEE Journal of Selected Topics in Signal Processing, 201

    Speaker-following Video Subtitles

    Full text link
    We propose a new method for improving the presentation of subtitles in video (e.g. TV and movies). With conventional subtitles, the viewer has to constantly look away from the main viewing area to read the subtitles at the bottom of the screen, which disrupts the viewing experience and causes unnecessary eyestrain. Our method places on-screen subtitles next to the respective speakers to allow the viewer to follow the visual content while simultaneously reading the subtitles. We use novel identification algorithms to detect the speakers based on audio and visual information. Then the placement of the subtitles is determined using global optimization. A comprehensive usability study indicated that our subtitle placement method outperformed both conventional fixed-position subtitling and another previous dynamic subtitling method in terms of enhancing the overall viewing experience and reducing eyestrain

    Bearing-only acoustic tracking of moving speakers for robot audition

    Get PDF
    This paper focuses on speaker tracking in robot audition for human-robot interaction. Using only acoustic signals, speaker tracking in enclosed spaces is subject to missing detections and spurious clutter measurements due to speech inactivity, reverberation and interference. Furthermore, many acoustic localization approaches estimate speaker direction, hence providing bearing-only measurements without range information. This paper presents a probability hypothesis density (PHD) tracker that augments the bearing-only speaker directions of arrival with a cloud of range hypotheses at speaker initiation and propagates the random variates through time. Furthermore, due to their formulation PHD filters explicitly model, and hence provide robustness against, clutter and missing detections. The approach is verified using experimental results
    • …
    corecore