5 research outputs found

    Active Control Strategies for Chemical Sensors and Sensor Arrays

    Get PDF
    Chemical sensors are generally used as one-dimensional devices, where one measures the sensor’s response at a fixed setting, e.g., infrared absorption at a specific wavelength, or conductivity of a solid-state sensor at a specific operating temperature. In many cases, additional information can be extracted by modulating some internal property (e.g., temperature, voltage) of the sensor. However, this additional information comes at a cost (e.g., sensing times, power consumption), so offline optimization techniques (such as feature-subset selection) are commonly used to identify a subset of the most informative sensor tunings. An alternative to offline techniques is active sensing, where the sensor tunings are adapted in real-time based on the information obtained from previous measurements. Prior work in domains such as vision, robotics, and target tracking has shown that active sensing can schedule agile sensors to manage their sensing resources more efficiently than passive sensing, and also balance between sensing costs and performance. Inspired from the history of active sensing, in this dissertation, we developed active sensing algorithms that address three different computational problems in chemical sensing. First, we consider the problem of classification with a single tunable chemical sensor. We formulate the classification problem as a partially observable Markov decision process, and solve it with a myopic algorithm. At each step, the algorithm estimates the utility of each sensing configuration as the difference between expected reduction in Bayesian risk and sensing cost, and selects the configuration with maximum utility. We evaluated this approach on simulated Fabry-Perot interferometers (FPI), and experimentally validated on metal-oxide (MOX) sensors. Our results show that the active sensing method obtains better classification performance than passive sensing methods, and also is more robust to additive Gaussian noise in sensor measurements. Second, we consider the problem of estimating concentrations of the constituents in a gas mixture using a tunable sensor. We formulate this multicomponent-analysis problem as that of probabilistic state estimation, where each state represents a different concentration profile. We maintain a belief distribution that assigns a probability to each profile, and update the distribution by incorporating the latest sensor measurements. To select the sensor’s next operating configuration, we use a myopic algorithm that chooses the operating configuration expected to best reduce the uncertainty in the future belief distribution. We validated this approach on both simulated and real MOX sensors. The results again demonstrate improved estimation performance and robustness to noise. Lastly, we present an algorithm that extends active sensing to sensor arrays. This algorithm borrows concepts from feature subset selection to enable an array of tunable sensors operate collaboratively for the classification of gas samples. The algorithm constructs an optimized action vector at each sensing step, which contains separate operating configurations for each sensor in the array. When dealing with sensor arrays, one needs to account for the correlation among sensors. To this end, we developed two objective functions: weighted Fisher scores, and dynamic mutual information, which can quantify the discriminatory information and redundancy of a given action vector with respect to the measurements already acquired. Once again, we validated the approach on simulated FPI arrays and experimentally tested it on an array of MOX sensors. The results show improved classification performance and robustness to additive noise

    Policy-Gradient Algorithms for Partially Observable Markov Decision Processes

    No full text
    Partially observable Markov decision processes are interesting because of their ability to model most conceivable real-world learning problems, for example, robot navigation, driving a car, speech recognition, stock trading, and playing games. The downside of this generality is that exact algorithms are computationally intractable. Such computational complexity motivates approximate approaches. One such class of algorithms are the so-called policy-gradient methods from reinforcement learning. They seek to adjust the parameters of an agent in the direction that maximises the long-term average of a reward signal. Policy-gradient methods are attractive as a \emph{scalable} approach for controlling partially observable Markov decision processes (POMDPs). In the most general case POMDP policies require some form of internal state, or memory, in order to act optimally. Policy-gradient methods have shown promise for problems admitting memory-less policies but have been less successful when memory is required. This thesis develops several improved algorithms for learning policies with memory in an infinite-horizon setting. Directly, when the dynamics of the world are known, and via Monte-Carlo methods otherwise. The algorithms simultaneously learn how to act and what to remember. ..

    Policy-Gradient Algorithms for Partially Observable Markov Decision Processes

    No full text
    Partially observable Markov decision processes are interesting because of their ability to model most conceivable real-world learning problems, for example, robot navigation, driving a car, speech recognition, stock trading, and playing games. The downside of this generality is that exact algorithms are computationally intractable. Such computational complexity motivates approximate approaches. One such class of algorithms are the so-called policy-gradient methods from reinforcement learning. They seek to adjust the parameters of an agent in the direction that maximises the long-term average of a reward signal. Policy-gradient methods are attractive as a \emph{scalable} approach for controlling partially observable Markov decision processes (POMDPs). In the most general case POMDP policies require some form of internal state, or memory, in order to act optimally. Policy-gradient methods have shown promise for problems admitting memory-less policies but have been less successful when memory is required. This thesis develops several improved algorithms for learning policies with memory in an infinite-horizon setting. Directly, when the dynamics of the world are known, and via Monte-Carlo methods otherwise. The algorithms simultaneously learn how to act and what to remember. ..

    Audio-coupled video content understanding of unconstrained video sequences

    Get PDF
    Unconstrained video understanding is a difficult task. The main aim of this thesis is to recognise the nature of objects, activities and environment in a given video clip using both audio and video information. Traditionally, audio and video information has not been applied together for solving such complex task, and for the first time we propose, develop, implement and test a new framework of multi-modal (audio and video) data analysis for context understanding and labelling of unconstrained videos. The framework relies on feature selection techniques and introduces a novel algorithm (PCFS) that is faster than the well-established SFFS algorithm. We use the framework for studying the benefits of combining audio and video information in a number of different problems. We begin by developing two independent content recognition modules. The first one is based on image sequence analysis alone, and uses a range of colour, shape, texture and statistical features from image regions with a trained classifier to recognise the identity of objects, activities and environment present. The second module uses audio information only, and recognises activities and environment. Both of these approaches are preceded by detailed pre-processing to ensure that correct video segments containing both audio and video content are present, and that the developed system can be made robust to changes in camera movement, illumination, random object behaviour etc. For both audio and video analysis, we use a hierarchical approach of multi-stage classification such that difficult classification tasks can be decomposed into simpler and smaller tasks. When combining both modalities, we compare fusion techniques at different levels of integration and propose a novel algorithm that combines advantages of both feature and decision-level fusion. The analysis is evaluated on a large amount of test data comprising unconstrained videos collected for this work. We finally, propose a decision correction algorithm which shows that further steps towards combining multi-modal classification information effectively with semantic knowledge generates the best possible results

    Audio-coupled video content understanding of unconstrained video sequences

    Get PDF
    Unconstrained video understanding is a difficult task. The main aim of this thesis is to recognise the nature of objects, activities and environment in a given video clip using both audio and video information. Traditionally, audio and video information has not been applied together for solving such complex task, and for the first time we propose, develop, implement and test a new framework of multi-modal (audio and video) data analysis for context understanding and labelling of unconstrained videos. The framework relies on feature selection techniques and introduces a novel algorithm (PCFS) that is faster than the well-established SFFS algorithm. We use the framework for studying the benefits of combining audio and video information in a number of different problems. We begin by developing two independent content recognition modules. The first one is based on image sequence analysis alone, and uses a range of colour, shape, texture and statistical features from image regions with a trained classifier to recognise the identity of objects, activities and environment present. The second module uses audio information only, and recognises activities and environment. Both of these approaches are preceded by detailed pre-processing to ensure that correct video segments containing both audio and video content are present, and that the developed system can be made robust to changes in camera movement, illumination, random object behaviour etc. For both audio and video analysis, we use a hierarchical approach of multi-stage classification such that difficult classification tasks can be decomposed into simpler and smaller tasks. When combining both modalities, we compare fusion techniques at different levels of integration and propose a novel algorithm that combines advantages of both feature and decision-level fusion. The analysis is evaluated on a large amount of test data comprising unconstrained videos collected for this work. We finally, propose a decision correction algorithm which shows that further steps towards combining multi-modal classification information effectively with semantic knowledge generates the best possible results.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore