343 research outputs found

    Fully Supervised Speaker Diarization

    Full text link
    In this paper, we propose a fully supervised speaker diarization approach, named unbounded interleaved-state recurrent neural networks (UIS-RNN). Given extracted speaker-discriminative embeddings (a.k.a. d-vectors) from input utterances, each individual speaker is modeled by a parameter-sharing RNN, while the RNN states for different speakers interleave in the time domain. This RNN is naturally integrated with a distance-dependent Chinese restaurant process (ddCRP) to accommodate an unknown number of speakers. Our system is fully supervised and is able to learn from examples where time-stamped speaker labels are annotated. We achieved a 7.6% diarization error rate on NIST SRE 2000 CALLHOME, which is better than the state-of-the-art method using spectral clustering. Moreover, our method decodes in an online fashion while most state-of-the-art systems rely on offline clustering.Comment: Accepted by ICASSP 201

    Speaker Diarization using Deep Recurrent Convolutional Neural Networks for Speaker Embeddings

    Full text link
    In this paper we propose a new method of speaker diarization that employs a deep learning architecture to learn speaker embeddings. In contrast to the traditional approaches that build their speaker embeddings using manually hand-crafted spectral features, we propose to train for this purpose a recurrent convolutional neural network applied directly on magnitude spectrograms. To compare our approach with the state of the art, we collect and release for the public an additional dataset of over 6 hours of fully annotated broadcast material. The results of our evaluation on the new dataset and three other benchmark datasets show that our proposed method significantly outperforms the competitors and reduces diarization error rate by a large margin of over 30% with respect to the baseline

    Neural Predictive Coding using Convolutional Neural Networks towards Unsupervised Learning of Speaker Characteristics

    Full text link
    Learning speaker-specific features is vital in many applications like speaker recognition, diarization and speech recognition. This paper provides a novel approach, we term Neural Predictive Coding (NPC), to learn speaker-specific characteristics in a completely unsupervised manner from large amounts of unlabeled training data that even contain many non-speech events and multi-speaker audio streams. The NPC framework exploits the proposed short-term active-speaker stationarity hypothesis which assumes two temporally-close short speech segments belong to the same speaker, and thus a common representation that can encode the commonalities of both the segments, should capture the vocal characteristics of that speaker. We train a convolutional deep siamese network to produce "speaker embeddings" by learning to separate `same' vs `different' speaker pairs which are generated from an unlabeled data of audio streams. Two sets of experiments are done in different scenarios to evaluate the strength of NPC embeddings and compare with state-of-the-art in-domain supervised methods. First, two speaker identification experiments with different context lengths are performed in a scenario with comparatively limited within-speaker channel variability. NPC embeddings are found to perform the best at short duration experiment, and they provide complementary information to i-vectors for full utterance experiments. Second, a large scale speaker verification task having a wide range of within-speaker channel variability is adopted as an upper-bound experiment where comparisons are drawn with in-domain supervised methods

    Towards an Unsupervised Entrainment Distance in Conversational Speech using Deep Neural Networks

    Full text link
    Entrainment is a known adaptation mechanism that causes interaction participants to adapt or synchronize their acoustic characteristics. Understanding how interlocutors tend to adapt to each other's speaking style through entrainment involves measuring a range of acoustic features and comparing those via multiple signal comparison methods. In this work, we present a turn-level distance measure obtained in an unsupervised manner using a Deep Neural Network (DNN) model, which we call Neural Entrainment Distance (NED). This metric establishes a framework that learns an embedding from the population-wide entrainment in an unlabeled training corpus. We use the framework for a set of acoustic features and validate the measure experimentally by showing its efficacy in distinguishing real conversations from fake ones created by randomly shuffling speaker turns. Moreover, we show real world evidence of the validity of the proposed measure. We find that high value of NED is associated with high ratings of emotional bond in suicide assessment interviews, which is consistent with prior studies.Comment: submitted to Interspeech 201

    Speaker Diarization with LSTM

    Full text link
    For many years, i-vector based audio embedding techniques were the dominant approach for speaker verification and speaker diarization applications. However, mirroring the rise of deep learning in various domains, neural network based audio embeddings, also known as d-vectors, have consistently demonstrated superior speaker verification performance. In this paper, we build on the success of d-vector based speaker verification systems to develop a new d-vector based approach to speaker diarization. Specifically, we combine LSTM-based d-vector audio embeddings with recent work in non-parametric clustering to obtain a state-of-the-art speaker diarization system. Our system is evaluated on three standard public datasets, suggesting that d-vector based diarization systems offer significant advantages over traditional i-vector based systems. We achieved a 12.0% diarization error rate on NIST SRE 2000 CALLHOME, while our model is trained with out-of-domain data from voice search logs.Comment: Published at ICASSP 201

    Cross-modal Supervision for Learning Active Speaker Detection in Video

    Full text link
    In this paper, we show how to use audio to supervise the learning of active speaker detection in video. Voice Activity Detection (VAD) guides the learning of the vision-based classifier in a weakly supervised manner. The classifier uses spatio-temporal features to encode upper body motion - facial expressions and gesticulations associated with speaking. We further improve a generic model for active speaker detection by learning person specific models. Finally, we demonstrate the online adaptation of generic models learnt on one dataset, to previously unseen people in a new dataset, again using audio (VAD) for weak supervision. The use of temporal continuity overcomes the lack of clean training data. We are the first to present an active speaker detection system that learns on one audio-visual dataset and automatically adapts to speakers in a new dataset. This work can be seen as an example of how the availability of multi-modal data allows us to learn a model without the need for supervision, by transferring knowledge from one modality to another.Comment: 16 page

    Semi-Supervised Training with Pseudo-Labeling for End-to-End Neural Diarization

    Full text link
    In this paper, we present a semi-supervised training technique using pseudo-labeling for end-to-end neural diarization (EEND). The EEND system has shown promising performance compared with traditional clustering-based methods, especially in the case of overlapping speech. However, to get a well-tuned model, EEND requires labeled data for all the joint speech activities of every speaker at each time frame in a recording. In this paper, we explore a pseudo-labeling approach that employs unlabeled data. First, we propose an iterative pseudo-label method for EEND, which trains the model using unlabeled data of a target condition. Then, we also propose a committee-based training method to improve the performance of EEND. To evaluate our proposed method, we conduct the experiments of model adaptation using labeled and unlabeled data. Experimental results on the CALLHOME dataset show that our proposed pseudo-label achieved a 37.4% relative diarization error rate reduction compared to a seed model. Moreover, we analyzed the results of semi-supervised adaptation with pseudo-labeling. We also show the effectiveness of our approach on the third DIHARD dataset.Comment: Accepted for Interspeech 202

    Putting a Face to the Voice: Fusing Audio and Visual Signals Across a Video to Determine Speakers

    Full text link
    In this paper, we present a system that associates faces with voices in a video by fusing information from the audio and visual signals. The thesis underlying our work is that an extremely simple approach to generating (weak) speech clusters can be combined with visual signals to effectively associate faces and voices by aggregating statistics across a video. This approach does not need any training data specific to this task and leverages the natural coherence of information in the audio and visual streams. It is particularly applicable to tracking speakers in videos on the web where a priori information about the environment (e.g., number of speakers, spatial signals for beamforming) is not available. We performed experiments on a real-world dataset using this analysis framework to determine the speaker in a video. Given a ground truth labeling determined by human rater consensus, our approach had ~71% accuracy

    Robust End-to-end Speaker Diarization with Generic Neural Clustering

    Full text link
    End-to-end speaker diarization approaches have shown exceptional performance over the traditional modular approaches. To further improve the performance of the end-to-end speaker diarization for real speech recordings, recently works have been proposed which integrate unsupervised clustering algorithms with the end-to-end neural diarization models. However, these methods have a number of drawbacks: 1) The unsupervised clustering algorithms cannot leverage the supervision from the available datasets; 2) The K-means-based unsupervised algorithms that are explored often suffer from the constraint violation problem; 3) There is unavoidable mismatch between the supervised training and the unsupervised inference. In this paper, a robust generic neural clustering approach is proposed that can be integrated with any chunk-level predictor to accomplish a fully supervised end-to-end speaker diarization model. Also, by leveraging the sequence modelling ability of a recurrent neural network, the proposed neural clustering approach can dynamically estimate the number of speakers during inference. Experimental show that when integrating an attractor-based chunk-level predictor, the proposed neural clustering approach can yield better Diarization Error Rate (DER) than the constrained K-means-based clustering approaches under the mismatched conditions.Comment: submitted to INTERSPEECH 202
    • …
    corecore