52,672 research outputs found

    Factor analysis modelling for speaker verification with short utterances

    Get PDF
    This paper examines combining both relevance MAP and subspace speaker adaptation processes to train GMM speaker models for use in speaker verification systems with a particular focus on short utterance lengths. The subspace speaker adaptation method involves developing a speaker GMM mean supervector as the sum of a speaker-independent prior distribution and a speaker dependent offset constrained to lie within a low-rank subspace, and has been shown to provide improvements in accuracy over ordinary relevance MAP when the amount of training data is limited. It is shown through testing on NIST SRE data that combining the two processes provides speaker models which lead to modest improvements in verification accuracy for limited data situations, in addition to improving the performance of the speaker verification system when a larger amount of available training data is available

    Robust language recognition via adaptive language factor extraction

    Get PDF
    This paper presents a technique to adapt an acoustically based language classifier to the background conditions and speaker accents. This adaptation improves language classification on a broad spectrum of TV broadcasts. The core of the system consists of an iVector-based setup in which language and channel variabilities are modeled separately. The subsequent language classifier (the backend) operates on the language factors, i.e. those features in the extracted iVectors that explain the observed language variability. The proposed technique adapts the language variability model to the background conditions and to the speaker accents present in the audio. The effect of the adaptation is evaluated on a 28 hours corpus composed of documentaries and monolingual as well as multilingual broadcast news shows. Consistent improvements in the automatic identification of Flemish (Belgian Dutch), English and French are demonstrated for all broadcast types

    Time-Contrastive Learning Based Deep Bottleneck Features for Text-Dependent Speaker Verification

    Get PDF
    There are a number of studies about extraction of bottleneck (BN) features from deep neural networks (DNNs)trained to discriminate speakers, pass-phrases and triphone states for improving the performance of text-dependent speaker verification (TD-SV). However, a moderate success has been achieved. A recent study [1] presented a time contrastive learning (TCL) concept to explore the non-stationarity of brain signals for classification of brain states. Speech signals have similar non-stationarity property, and TCL further has the advantage of having no need for labeled data. We therefore present a TCL based BN feature extraction method. The method uniformly partitions each speech utterance in a training dataset into a predefined number of multi-frame segments. Each segment in an utterance corresponds to one class, and class labels are shared across utterances. DNNs are then trained to discriminate all speech frames among the classes to exploit the temporal structure of speech. In addition, we propose a segment-based unsupervised clustering algorithm to re-assign class labels to the segments. TD-SV experiments were conducted on the RedDots challenge database. The TCL-DNNs were trained using speech data of fixed pass-phrases that were excluded from the TD-SV evaluation set, so the learned features can be considered phrase-independent. We compare the performance of the proposed TCL bottleneck (BN) feature with those of short-time cepstral features and BN features extracted from DNNs discriminating speakers, pass-phrases, speaker+pass-phrase, as well as monophones whose labels and boundaries are generated by three different automatic speech recognition (ASR) systems. Experimental results show that the proposed TCL-BN outperforms cepstral features and speaker+pass-phrase discriminant BN features, and its performance is on par with those of ASR derived BN features. Moreover,....Comment: Copyright (c) 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work
    • ā€¦
    corecore