573 research outputs found

    Acoustic Adaptation to Dynamic Background Conditions with Asynchronous Transformations

    Get PDF
    This paper proposes a framework for performing adaptation to complex and non-stationary background conditions in Automatic Speech Recognition (ASR) by means of asynchronous Constrained Maximum Likelihood Linear Regression (aCMLLR) transforms and asynchronous Noise Adaptive Training (aNAT). The proposed method aims to apply the feature transform that best compensates the background for every input frame. The implementation is done with a new Hidden Markov Model (HMM) topology that expands the usual left-to-right HMM into parallel branches adapted to different background conditions and permits transitions among them. Using this, the proposed adaptation does not require ground truth or previous knowledge about the background in each frame as it aims to maximise the overall log-likelihood of the decoded utterance. The proposed aCMLLR transforms can be further improved by retraining models in an aNAT fashion and by using speaker-based MLLR transforms in cascade for an efficient modelling of background effects and speaker. An initial evaluation in a modified version of the WSJCAM0 corpus incorporating 7 different background conditions provides a benchmark in which to evaluate the use of aCMLLR transforms. A relative reduction of 40.5% in Word Error Rate (WER) was achieved by the combined use of aCMLLR and MLLR in cascade. Finally, this selection of techniques was applied in the transcription of multi-genre media broadcasts, where the use of aNAT training, aCMLLR transforms and MLLR transforms provided a relative improvement of 2–3%

    Sketching for Large-Scale Learning of Mixture Models

    Get PDF
    Learning parameters from voluminous data can be prohibitive in terms of memory and computational requirements. We propose a "compressive learning" framework where we estimate model parameters from a sketch of the training data. This sketch is a collection of generalized moments of the underlying probability distribution of the data. It can be computed in a single pass on the training set, and is easily computable on streams or distributed datasets. The proposed framework shares similarities with compressive sensing, which aims at drastically reducing the dimension of high-dimensional signals while preserving the ability to reconstruct them. To perform the estimation task, we derive an iterative algorithm analogous to sparse reconstruction algorithms in the context of linear inverse problems. We exemplify our framework with the compressive estimation of a Gaussian Mixture Model (GMM), providing heuristics on the choice of the sketching procedure and theoretical guarantees of reconstruction. We experimentally show on synthetic data that the proposed algorithm yields results comparable to the classical Expectation-Maximization (EM) technique while requiring significantly less memory and fewer computations when the number of database elements is large. We further demonstrate the potential of the approach on real large-scale data (over 10 8 training samples) for the task of model-based speaker verification. Finally, we draw some connections between the proposed framework and approximate Hilbert space embedding of probability distributions using random features. We show that the proposed sketching operator can be seen as an innovative method to design translation-invariant kernels adapted to the analysis of GMMs. We also use this theoretical framework to derive information preservation guarantees, in the spirit of infinite-dimensional compressive sensing

    Factorised representations for neural network adaptation to diverse acoustic environments

    Get PDF

    Processing and Linking Audio Events in Large Multimedia Archives: The EU inEvent Project

    Get PDF
    In the inEvent EU project [1], we aim at structuring, retrieving, and sharing large archives of networked, and dynamically changing, multimedia recordings, mainly consisting of meetings, videoconferences, and lectures. More specifically, we are developing an integrated system that performs audiovisual processing of multimedia recordings, and labels them in terms of interconnected “hyper-events ” (a notion inspired from hyper-texts). Each hyper-event is composed of simpler facets, including audio-video recordings and metadata, which are then easier to search, retrieve and share. In the present paper, we mainly cover the audio processing aspects of the system, including speech recognition, speaker diarization and linking (across recordings), the use of these features for hyper-event indexing and recommendation, and the search portal. We present initial results for feature extraction from lecture recordings using the TED talks. Index Terms: Networked multimedia events; audio processing: speech recognition; speaker diarization and linking; multimedia indexing and searching; hyper-events. 1
    • 

    corecore