10 research outputs found

    On adaptive decision rules and decision parameter adaptation for automatic speech recognition

    Get PDF
    Recent advances in automatic speech recognition are accomplished by designing a plug-in maximum a posteriori decision rule such that the forms of the acoustic and language model distributions are specified and the parameters of the assumed distributions are estimated from a collection of speech and language training corpora. Maximum-likelihood point estimation is by far the most prevailing training method. However, due to the problems of unknown speech distributions, sparse training data, high spectral and temporal variabilities in speech, and possible mismatch between training and testing conditions, a dynamic training strategy is needed. To cope with the changing speakers and speaking conditions in real operational conditions for high-performance speech recognition, such paradigms incorporate a small amount of speaker and environment specific adaptation data into the training process. Bayesian adaptive learning is an optimal way to combine prior knowledge in an existing collection of general models with a new set of condition-specific adaptation data. In this paper, the mathematical framework for Bayesian adaptation of acoustic and language model parameters is first described. Maximum a posteriori point estimation is then developed for hidden Markov models and a number of useful parameters densities commonly used in automatic speech recognition and natural language processing.published_or_final_versio

    Optical music recognition of the singer using formant frequency estimation of vocal fold vibration and lip motion with interpolated GMM classifiers

    Get PDF
    The main work of this paper is to identify the musical genres of the singer by performing the optical detection of lip motion. Recently, optical music recognition has attracted much attention. Optical music recognition in this study is a type of automatic techniques in information engineering, which can be used to determine the musical style of the singer. This paper proposes a method for optical music recognition where acoustic formant analysis of both vocal fold vibration and lip motion are employed with interpolated Gaussian mixture model (GMM) estimation to perform musical genre classification of the singer. The developed approach for such classification application is called GMM-Formant. Since humming and voiced speech sounds cause periodic vibrations of the vocal folds and then the corresponding motion of the lip, the proposed GMM-Formant firstly operates to acquire the required formant information. Formant information is important acoustic feature data for recognition classification. The proposed GMM-Formant method then uses linear interpolation for combining GMM likelihood estimates and formant evaluation results appropriately. GMM-Formant will effectively adjust the estimated formant feature evaluation outcomes by referring to certain degree of the likelihood score derived from GMM calculations. The superiority and effectiveness of presented GMM-Formant are demonstrated by a series of experiments on musical genre classification of the singer

    Bayesian Speaker Adaptation Based on a New Hierarchical Probabilistic Model

    Get PDF
    In this paper, a new hierarchical Bayesian speaker adaptation method called HMAP is proposed that combines the advantages of three conventional algorithms, maximum a posteriori (MAP), maximum-likelihood linear regression (MLLR), and eigenvoice, resulting in excellent performance across a wide range of adaptation conditions. The new method efficiently utilizes intra-speaker and inter-speaker correlation information through modeling phone and speaker subspaces in a consistent hierarchical Bayesian way. The phone variations for a specific speaker are assumed to be located in a low-dimensional subspace. The phone coordinate, which is shared among different speakers, implicitly contains the intra-speaker correlation information. For a specific speaker, the phone variation, represented by speaker-dependent eigenphones, are concatenated into a supervector. The eigenphone supervector space is also a low dimensional speaker subspace, which contains inter-speaker correlation information. Using principal component analysis (PCA), a new hierarchical probabilistic model for the generation of the speech observations is obtained. Speaker adaptation based on the new hierarchical model is derived using the maximum a posteriori criterion in a top-down manner. Both batch adaptation and online adaptation schemes are proposed. With tuned parameters, the new method can handle varying amounts of adaptation data automatically and efficiently. Experimental results on a Mandarin Chinese continuous speech recognition task show good performance under all testing conditions

    Sparse Classifier Fusion for Speaker Verification

    Full text link

    Speech data analysis for semantic indexing of video of simulated medical crises.

    Get PDF
    The Simulation for Pediatric Assessment, Resuscitation, and Communication (SPARC) group within the Department of Pediatrics at the University of Louisville, was established to enhance the care of children by using simulation based educational methodologies to improve patient safety and strengthen clinician-patient interactions. After each simulation session, the physician must manually review and annotate the recordings and then debrief the trainees. The physician responsible for the simulation has recorded 100s of videos, and is seeking solutions that can automate the process. This dissertation introduces our developed system for efficient segmentation and semantic indexing of videos of medical simulations using machine learning methods. It provides the physician with automated tools to review important sections of the simulation by identifying who spoke, when and what was his/her emotion. Only audio information is extracted and analyzed because the quality of the image recording is low and the visual environment is static for most parts. Our proposed system includes four main components: preprocessing, speaker segmentation, speaker identification, and emotion recognition. The preprocessing consists of first extracting the audio component from the video recording. Then, extracting various low-level audio features to detect and remove silence segments. We investigate and compare two different approaches for this task. The first one is threshold-based and the second one is classification-based. The second main component of the proposed system consists of detecting speaker changing points for the purpose of segmenting the audio stream. We propose two fusion methods for this task. The speaker identification and emotion recognition components of our system are designed to provide users the capability to browse the video and retrieve shots that identify ”who spoke, when, and the speaker’s emotion” for further analysis. For this component, we propose two feature representation methods that map audio segments of arbitary length to a feature vector with fixed dimensions. The first one is based on soft bag-of-word (BoW) feature representations. In particular, we define three types of BoW that are based on crisp, fuzzy, and possibilistic voting. The second feature representation is a generalization of the BoW and is based on Fisher Vector (FV). FV uses the Fisher Kernel principle and combines the benefits of generative and discriminative approaches. The proposed feature representations are used within two learning frameworks. The first one is supervised learning and assumes that a large collection of labeled training data is available. Within this framework, we use standard classifiers including K-nearest neighbor (K-NN), support vector machine (SVM), and Naive Bayes. The second framework is based on semi-supervised learning where only a limited amount of labeled training samples are available. We use an approach that is based on label propagation. Our proposed algorithms were evaluated using 15 medical simulation sessions. The results were analyzed and compared to those obtained using state-of-the-art algorithms. We show that our proposed speech segmentation fusion algorithms and feature mappings outperform existing methods. We also integrated all proposed algorithms and developed a GUI prototype system for subjective evaluation. This prototype processes medical simulation video and provides the user with a visual summary of the different speech segments. It also allows the user to browse videos and retrieve scenes that provide answers to semantic queries such as: who spoke and when; who interrupted who? and what was the emotion of the speaker? The GUI prototype can also provide summary statistics of each simulation video. Examples include: for how long did each person spoke? What is the longest uninterrupted speech segment? Is there an unusual large number of pauses within the speech segment of a given speaker

    Subspace Gaussian mixture models for automatic speech recognition

    Get PDF
    In most of state-of-the-art speech recognition systems, Gaussian mixture models (GMMs) are used to model the density of the emitting states in the hidden Markov models (HMMs). In a conventional system, the model parameters of each GMM are estimated directly and independently given the alignment. This results a large number of model parameters to be estimated, and consequently, a large amount of training data is required to fit the model. In addition, different sources of acoustic variability that impact the accuracy of a recogniser such as pronunciation variation, accent, speaker factor and environmental noise are only weakly modelled and factorized by adaptation techniques such as maximum likelihood linear regression (MLLR), maximum a posteriori adaptation (MAP) and vocal tract length normalisation (VTLN). In this thesis, we will discuss an alternative acoustic modelling approach — the subspace Gaussian mixture model (SGMM), which is expected to deal with these two issues better. In an SGMM, the model parameters are derived from low-dimensional model and speaker subspaces that can capture phonetic and speaker correlations. Given these subspaces, only a small number of state-dependent parameters are required to derive the corresponding GMMs. Hence, the total number of model parameters can be reduced, which allows acoustic modelling with a limited amount of training data. In addition, the SGMM-based acoustic model factorizes the phonetic and speaker factors and within this framework, other source of acoustic variability may also be explored. In this thesis, we propose a regularised model estimation for SGMMs, which avoids overtraining in case that the training data is sparse. We will also take advantage of the structure of SGMMs to explore cross-lingual acoustic modelling for low-resource speech recognition. Here, the model subspace is estimated from out-domain data and ported to the target language system. In this case, only the state-dependent parameters need to be estimated which relaxes the requirement of the amount of training data. To improve the robustness of SGMMs against environmental noise, we propose to apply the joint uncertainty decoding (JUD) technique that is shown to be efficient and effective. We will report experimental results on the Wall Street Journal (WSJ) database and GlobalPhone corpora to evaluate the regularisation and cross-lingual modelling of SGMMs. Noise compensation using JUD for SGMM acoustic models is evaluated on the Aurora 4 database

    Dysarthric speech analysis and automatic recognition using phase based representations

    Get PDF
    Dysarthria is a neurological speech impairment which usually results in the loss of motor speech control due to muscular atrophy and poor coordination of articulators. Dysarthric speech is more difficult to model with machine learning algorithms, due to inconsistencies in the acoustic signal and to limited amounts of training data. This study reports a new approach for the analysis and representation of dysarthric speech, and applies it to improve ASR performance. The Zeros of Z-Transform (ZZT) are investigated for dysarthric vowel segments. It shows evidence of a phase-based acoustic phenomenon that is responsible for the way the distribution of zero patterns relate to speech intelligibility. It is investigated whether such phase-based artefacts can be systematically exploited to understand their association with intelligibility. A metric based on the phase slope deviation (PSD) is introduced that are observed in the unwrapped phase spectrum of dysarthric vowel segments. The metric compares the differences between the slopes of dysarthric vowels and typical vowels. The PSD shows a strong and nearly linear correspondence with the intelligibility of the speaker, and it is shown to hold for two separate databases of dysarthric speakers. A systematic procedure for correcting the underlying phase deviations results in a significant improvement in ASR performance for speakers with severe and moderate dysarthria. In addition, information encoded in the phase component of the Fourier transform of dysarthric speech is exploited in the group delay spectrum. Its properties are found to represent disordered speech more effectively than the magnitude spectrum. Dysarthric ASR performance was significantly improved using phase-based cepstral features in comparison to the conventional MFCCs. A combined approach utilising the benefits of PSD corrections and phase-based features was found to surpass all the previous performance on the UASPEECH database of dysarthric speech
    corecore