599 research outputs found

    Climatic, environmental and socio-economic factors for malaria transmission modelling in KwaZulu-Natal, South Africa.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Sub-Saharan Africa (SSA) largely bears the burden of the global malaria disease, with the transmission and intensity influenced by the interaction of a variety of climatic, environmental, socio-economic, and human factors. Other factors include parasitic and vectoral factors. In South Africa (SA) in general and KwaZulu-Natal (KZN) in particular, the change of the malaria control intervention policy in 2000, may be responsible for the significant progress over the past two decades in reducing malaria case report to near zero. Currently, malaria incidence in KZN is less than 1 case per 1000 persons at risk placing the province in the malaria elimination stage. To meeting the elimination target, it is necessary to study the dynamics of malaria transmission in KZN employing various analytical/statistical models. Thus, the aim of this study was to explore the factors that influence malaria transmission by employing different analytical models and approaches in a setting with low malaria endemicity and transmission. This involves a sound appraisal of the existing literature on the contribution of remote sensing technology in understanding malaria transmission, evaluation of existing malaria control intervention; delineation of empirical map of malaria risk; provide information on the climatic, environmental and socio-economic factors that influences malaria risk and transmission; and formulation of a relevant malaria forecast and surveillance models. The investigator started with a systemic review of studies in chapter two. The studies were aimed at identifying significant remotely-sensed climatic and environmental determinants of malaria transmission for modelling malaria transmission and risk in SSA via a variety of statistical approaches. Normalised difference vegetation index (NDVI) was identified as the most significant remotely-sensed climatic/environmental determinants of malaria transmission in SSA. Majority of the studies employed the generalised linear modelling approach compared to the Bayesian modelling approach. In the third chapter, malaria cases from the endemic areas of KZN with remotely-sensed climatic and environmental data were used to model the climatic and environmental determinants of malaria transmission and develop a malaria risk map in KZN. The spatiotemporal zero inflated Poisson model formulated indicates that at 95% Bayesian credible interval (BCI) NDVI (0.91; 95% BCI = 0.71, -1.12), precipitation (0.11; 95% BCI = 0.08, 0.14), elevation (0.05; 95% BCI = 0.032, 0.07) and night temperature (0.04; 95% BCI = 0.03, 0.04) are significantly related to malaria transmission in KZN, SA. The area with the highest risk of malaria morbidity in KZN was identified as the north-eastern part of the province. The fourth chapter was to establish the socio-economic status (SES) that influence malaria transmission in the endemic areas of KZN, by employing a Bayesian inference approach. The obtained posterior samples revealed that, significant association existed between malaria disease and low SES such as illiteracy, unemployment, no toilet facilities and no electricity at 95% BCI Lack of toilet facilities (odds ration (OR) =12.54; 95% BCI = 0.63, 24.38) exhibited the strongest association with malaria and highest risk of malaria disease. This was followed by no education (OR =11.83; 95% BCI = 0.54, 24.27) and lack of electricity supply (OR =10.56; 95% BCI = 0.43, 23.92) respectively. In the fifth chapter, the seasonal autoregressive integrated moving average (SARIMA) intervention time series analysis (ITSA) was employed to model the effect of the malaria control intervention, dichlorodiphenyltrichloroethane (DDT) on confirmed monthly malaria cases. The result is an abrupt and permanent decline of monthly malaria cases (w0= −1174.781, p-value = 0.003) following the implementation of the intervention policy. Finally, the sixth chapter employed a SARIMA modelling approach to predict malaria cases in the endemic areas of KZN. Three plausible models were identified, and based on the goodness of fit statistics and parameter estimation, the SARIMA (0,1,1) (0,1,1)12 model was identified as the best fit model. The SARIMA (0,1,1)(0,1,1)12 model was used to forecast malaria cases during 2014, and it was observed to fit closely with the reported malaria cases during January to December 2014. The models generated in this study demonstrated the need for the KZN malaria program, relevant policy makers and stakeholders to further strengthen the KZN malaria elimination efforts. The required malaria elimination fortification are not limited to the implementation of additional sustainable developmental approach that combines both improved malaria intervention resources and socio-economic conditions, strengthening of existing community health workers, and strengthening of the already existing cross-border collaborations. However, more studies in the area of statistical modelling as well as practical applications of the generated models are encouraged. These can be accomplished by exploring new avenues via cross-sectional survey to understand the impact of community and social related structures in malaria burden; strengthening of existing community health workers; knowledge, attitude and practices in malaria control and intervention; and the likely effects of temporal/seasonal and spatial variations of malaria incidence in neighbouring endemic countries should be explored

    Climate-Triggered Drought as Causes for Different Degradation Types of Natural Forests: A Multitemporal Remote Sensing Analysis in NE Iran

    Get PDF
    Climate-triggered forest disturbances are increasing either by drought or by other climate extremes. Droughts can change the structure and function of forests in long-term or cause large-scale disturbances such as tree mortality, forest fires and insect outbreaks in short-term. Traditional approaches such as dendroclimatological surveys could retrieve the long-term responses of forest trees to drought conditions; however, they are restricted to individual trees or local forest stands. Therefore, multitemporal satellite-based approaches are progressing for holistic assessment of climate-induced forest responses from regional to global scales. However, little information exists on the efficiency of satellite data for analyzing the effects of droughts in different forest biomes and further studies on the analysis of approaches and large-scale disturbances of droughts are required. This research was accomplished for assessing satellite-derived physiological responses of the Caspian Hyrcanian broadleaves forests to climate-triggered droughts from regional to large scales in northeast Iran. The 16-day physiological anomalies of rangelands and forests were analysed using MODIS-derived indices concerning water content deficit and greenness loss, and their variations were spatially assessed with monthly and inter-seasonal precipitation anomalies from 2000 to 2016. Specifically, dimensions of forest droughts were evaluated in relations with the dimensions of meteorological and hydrological droughts. Large-scale effects of droughts were explored in terms of tree mortality, insect outbreaks, and forest fires using field observations, multitemporal Landsat and TerraClimate data. Various approaches were evaluated to explore forest responses to climate hazards such as traditional regression models, spatial autocorrelations, spatial regression models, and panel data models. Key findings revealed that rangelands’ anomalies did show positive responses to monthly and inter-seasonal precipitation anomalies. However, forests’ droughts were highly associated with increases in temperatures and evapotranspiration and were slightly associated with the decreases in precipitation and surface water level. The hazard intensity of droughts has affected the water content of forests higher than their greenness properties. The stages of moderate to extreme dieback of trees were significantly associated with the hazard intensity of the deficit of forests’ water content. However, the stage of severe defoliation was only associated with the hazard intensity of forests’ greenness loss. Climate hazards significantly triggered insect outbreaks and forest fires. Although maximum temperatures, precipitation deficit, availability of soil moisture and forest fires of the previous year could significantly trigger insect outbreaks, the maximum temperatures were the only significant triggers of forest fires from 2010‒2017. In addition to climate factors, environmental and anthropogenic factors could control fire severity during a dry season. The overall evaluation indicated the evidence of spatial associations between satellite-derived forest disturbances and climate hazards. Future studies are required to apply the approaches that could handle big-data, use the satellite data that have finer wavelengths for large-scale mapping of forest disturbances, and discriminate climate-induced forest disturbances from those that induced by other biotic and abiotic agents.Klimagbedingte Waldstörungen nehmen entweder durch DĂŒrre oder durch andere Klimaextreme zu. DĂŒrren können langfristig die Struktur und Funktion der WĂ€lder verĂ€ndern oder kurzfristig große Störungen wie Baumsterben, WaldbrĂ€nde und InsektenausbrĂŒche verursachen. Traditionelle AnsĂ€tze wie dendroklimatologische Untersuchungen könnten die langfristigen Reaktionen von WaldbĂ€umen auf DĂŒrrebedingungen aufzeigen, sie sind aber auf einzelne BĂ€ume oder lokale WaldbestĂ€nde beschrĂ€nkt. Daher werden multitemporale satellitengestĂŒtzte AnsĂ€tze zur ganzheitlichen Bewertung von klimabedingten Waldreaktionen auf regionaler bis globaler Ebene weiterentwickelt. Es gibt jedoch nur wenige Informationen ĂŒber die Effizienz von Satellitendaten zur Analyse der Auswirkungen von DĂŒrren in verschiedenen Waldbiotopen. Daher sind weitere Studien zur Analyse von AnsĂ€tzen und großrĂ€umigen Störungen von DĂŒrren erforderlich. Diese Forschung wurde durchgefĂŒhrt, um die aus Satellitendaten gewonnenen physiologischen Reaktionen der im Nordosten Irans gelegenen kaspischen hyrkanischen LaubwĂ€lder auf klimabedingte DĂŒrren auf lokaler und regionaler Ebene zu bewerten. Auf der Grundlage der aus MODIS-Daten abgeleiteten Indizes wurden die 16-tĂ€gigen physiologischen Anomalien von Weideland und WĂ€ldern in Bezug auf Wassergehaltsdefizit und GrĂŒnverlust analysiert und ihre Variationen rĂ€umlich mit monatlichen und intersaisonalen Niederschlagsanomalien von 2000 bis 2016 bewertet. Insbesondere wurden die Dimensionen der WalddĂŒrre in Verbindung mit den Dimensionen der meteorologischen und hydrologischen DĂŒrre bewertet. GroßrĂ€umige Auswirkungen von DĂŒrren wurden in Bezug auf Baumsterblichkeit, InsektenausbrĂŒche und WaldbrĂ€nde mit Hilfe von Feldbeobachtungen, multitemporalen Landsat- und TerraClimate Daten untersucht. Verschiedene AnsĂ€tze wurden ausgewertet, um Waldreaktionen auf Klimagefahren wie traditionelle Regressionsmodelle, rĂ€umliche Autokorrelationen, rĂ€umliche Regressionsmodelle und Paneldatenmodelle zu untersuchen. Die wichtigsten Ergebnisse zeigten, dass die Anomalien von Weideland positive Reaktionen auf monatliche und intersaisonale Niederschlagsanomalien aufweisen. Die DĂŒrren in den WĂ€ldern waren jedoch in hohem Maße mit Temperaturerhöhungen und Evapotranspiration verbunden und standen in geringem Zusammenhang mit dem RĂŒckgang von NiederschlĂ€gen und des OberflĂ€chenwasserspiegels. Die GefĂ€hrdungsintensitĂ€t von DĂŒrren hat den Wassergehalt von WĂ€ldern stĂ€rker beeinflusst als die Eigenschaften ihres BlattgrĂŒns. Die Stufen mittlerer bis extremer Baumsterblichkeit waren signifikant mit der GefĂ€hrdungsintensitĂ€t des Defizits des Wassergehalts der WĂ€lder verbunden. Das Ausmaß der starken Entlaubung hing jedoch nur mit der GefĂ€hrdungsintensitĂ€t des GrĂŒnverlustes der WĂ€lder zusammen. Die Klimagefahren haben zu deutlichen InsektenausbrĂŒchen und WaldbrĂ€nden gefĂŒhrt. Obwohl Maximaltemperaturen, Niederschlagsdefizite, fehlende Bodenfeuchte und WaldbrĂ€nde des Vorjahres deutlich InsektenausbrĂŒche auslösen konnten, waren die Maximaltemperaturen die einzigen signifikanten Auslöser von WaldbrĂ€nden von 2010 bis 2017. Neben den Klimafaktoren können auch umweltbedingte und anthropogene Faktoren den Schweregrad eines Brandes wĂ€hrend einer Trockenzeit beeinflussen. Die Gesamtbewertung zeigt Hinweise auf rĂ€umliche ZusammenhĂ€nge zwischen aus Satellitendaten abgeleiteten Waldstörungen und Klimagefahren. Weitere Untersuchungen sind erforderlich, um AnsĂ€tze anzuwenden, die mit großen Datenmengen umgehen können, die Satellitendaten in einer hohen spektralen Auflösung fĂŒr die großmaßstĂ€bige Kartierung von Waldstörungen verwenden und die klimabedingte Waldstörungen von denen zu unterscheiden, die durch andere biotische und abiotische Faktoren verursacht werden

    Spatial-temporal analyses of climate elements, vegetation characteristics and sea surface temperature anomaly. A Case study in Gojam, Ethiopia

    Get PDF
    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.Agriculture is the backbone of Gojjam economy as it depends on seasonal characteristics of rainfall. This study analyses the components of regional climate variability, especially La Niña or El Niño Southern Oscillation (ENSO) events and their impact on rainfall variability and the growing season normalized difference vegetation index. The temporal and spatial distribution of temperature, precipitation and vegetation cover have been investigated statistically in two agricultural productive seasons for a period of 9 years (2000–2008), using data from 11 meteorological station and MODIS satellite data in Gojam, Ethiopia. The normalized difference vegetation index (NDVI) is widely accepted as a good indicator for providing vegetation properties and associated changes for large scale geographic regions. Investigations indicate that climate variability is persistent particularly in the small rainy season Belg and continues to affect vegetation condition and thus Belg crop production. Statistical correlation analyses shows strong positive correlation between NDVI and rainfall in most years, and negative relationship between temperature and NDVI in both seasons. Although El Niño and La Niña events vary in magnitude in time, ENSO analyses shows that two strong La Niña years and one strong El Niño years. ENSO analyses result shows that its impact to the region rainfall variability is mostly noticeable but it is inconsistent and difficult to predict all the time. The NDVI anomaly patterns approximately agree with the main documented precipitation and temperature anomaly patterns associated with ENSO, but also show additional patterns not related to ENSO. The spatial and temporal analyses of climate elements and NDVI values for the growing season shows that NDVI and rainfall are very unstable and variable during the 9 years period. ENSO /El Niño and La Niña events analyses shows an increase of vegetation coverage during El Niño episodes contrasting to La Niña episodes. Moreover, El Niño years are good for Belg crop production

    Towards an operational model for estimating day and night instantaneous near-surface air temperature for urban heat island studies: outline and assessment

    Get PDF
    Near-surface air temperature (NSAT) is key for assessing urban heat islands, human health, and well-being. However, a widely recognized and cost- and time-effective replicable approach for estimating hourly NSAT is still urgent. In this study, we outline and validate an easy-to-replicate, yet effective, operational model, for automating the estimation of high-resolution day and night instantaneous NSAT. The model is tested on a heat wave event and for a large geographical area. The model combines remotely sensed land surface temperature and digital elevation model, with air temperature from local fixed weather station networks. Achieved NSAT has daily and hourly frequency consistent with MODIS revisiting time. A geographically weighted regression method is employed, with exponential weighting found to be highly accurate for our purpose. A robust assessment of different methods, at different time slots, both day- and night-time, and during a heatwave event, is provided based on a cross-validation protocol. Four-time periods are modelled and tested, for two consecutive days, i.e. 31st of July 2020 at 10:40 and 21:50, and 1st of August 2020 at 02:00 and 13:10 local time. High R2 was found for all time slots, ranging from 0.82 to 0.88, with a bias close to 0, RMSE ranging from 1.45 °C to 1.77 °C, and MAE from 1.15 °C to 1.36 °C. Normalized RMSE and MAE are roughly 0.05 to 0.08. Overall, if compared to other recognized regression models, higher effectiveness is allowed also in terms of spatial autocorrelation of residuals, as well as in terms of model sensitivity

    Improving Satellite Leaf Area Index Estimation Based On Various Integration Methods

    Get PDF
    Leaf Area Index (LAI) is an important land surface biophysical variable that is used to characterize vegetation amount and activity. Current satellite LAI products, however, do not satisfy the requirements of the modeling community due to their large uncertainties and frequent missing values. Each LAI product is currently generated from only one satellite sensor data. There is an urgent need for advanced methods to integrate multiple LAI products to improve the product's accuracy and integrality for various applications. To meet this need, this study proposes four methods, including the Optimal Interpolation (OI), Bayesian Maximum Entropy (BME), Multi-Resolution Tree (MRT) and Empirical Orthogonal Function (EOF), to integrate multiple LAI products. Three LAI products have been considered in this study: Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging SpectroRadiometer (MISR) and Carbon cYcle and Change in Land Observational Products from an Ensemble of Satellites (CYCLOPES) LAI. As the basis of data integration, this dissertation first validates and intercompares MODIS and CYCLOPES LAI products and also evaluates their geometric accuracies. The CYCLOPES LAI product has smoother temporal profiles and fewer spatial variations, but tends to produce spurious large errors in winter. The Locally Adjusted Cubic-spline Capping algorithm is revised to smooth multiple years' average and variance. Although OI, BME and MRT based methods have been used in other fields, this is the first research to employ them in integrating multiple LAI products. This dissertation also presents a new integration method based on EOF to solve the problem of large data volume and inconsistent temporal resolution of different datasets. High resolution LAI reference maps generated with ground measurements are used to validate these algorithms. Validation results show that all of these four methods can fill data gaps and reduce the errors of the existing LAI products. The data gaps are filled with information from adjacent pixels and background. These algorithms remove the spurious large temporal and spatial variation of the original LAI products. The combination of multiple satellite products significantly reduces bias. OI and BME can reduce the RMSE from 1.0 (MODIS) to 0.7 and reduce the bias from +0.3 (MODIS) and -0.2 (CYCLOPES) to -0.1. MRT can produce similar results with OI but with significantly improved efficiency. EOF also generates the results with the RMSE of 0.7 but zero bias. Limited ground measurement data hardly prove which methods outperform the others. OI and BME theoretically produce statistically optimal results. BME relaxes OI's linear and Gaussian assumption and explicitly considers data error, but bears a much higher computational burden. MRT has improved efficiency but needs strict assumptions on the scale transfer function. EOF requires simpler model identification, while it is more "empirical" than "statistical". The original contributions of this study mainly include: 1) a new application of several different integration methods to incorporate multiple satellite LAI products to reduce uncertainties and improve integrality, 2) an enhancement of the Locally Adjusted Cubic-spline Capping by revising the end condition, 3) a novel comprehensive comparison of MODIS C5 LAI product with other satellite products, 4) the development of a new LAI normalization scheme by assuming the linear relationship between measurement error and LAI natural variance to account for the inconsistency between products, and finally, 5) the creation of a new data integration method based on EOF

    Quantifying the Effect of Registration Error on Spatio-Temporal Fusion

    Get PDF
    It is challenging to acquire satellite sensor data with both fine spatial and fine temporal resolution, especially for monitoring at global scales. Among the widely used global monitoring satellite sensors, Landsat data have a coarse temporal resolution, but fine spatial resolution, while moderate resolution imaging spectroradiometer (MODIS) data have fine temporal resolution, but coarse spatial resolution. One solution to this problem is to blend the two types of data using spatio-temporal fusion, creating images with both fine temporal and fine spatial resolution. However, reliable geometric registration of images acquired by different sensors is a prerequisite of spatio-temporal fusion. Due to the potentially large differences between the spatial resolutions of the images to be fused, the geometric registration process always contains some degree of uncertainty. This article analyzes quantitatively the influence of geometric registration error on spatio-temporal fusion. The relationship between registration error and the accuracy of fusion was investigated under the influence of different temporal distances between images, different spatial patterns within the images and using different methods (i.e., spatial and temporal adaptive reflectance fusion model (STARFM), and Fit-FC; two typical spatio-temporal fusion methods). The results show that registration error has a significant impact on the accuracy of spatio-temporal fusion; as the registration error increased, the accuracy decreased monotonically. The effect of registration error in a heterogeneous region was greater than that in a homogeneous region. Moreover, the accuracy of fusion was not dependent on the temporal distance between images to be fused, but rather on their statistical correlation. Finally, the Fit-FC method was found to be more accurate than the STARFM method, under all registration error scenarios. © 2008-2012 IEEE

    Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

    Get PDF
    A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations (159) in Croatia. The input data set contains 57,282 ground measurements of daily temperature for the year 2008. Temperature was modeled as a function of latitude, longitude, distance from the sea, elevation, time, insolation, and the MODIS LST images. The original rasters were first converted to principal components to reduce noise and filter missing pixels in the LST images. The residual were next analyzed for spatio-temporal auto-correlation; sum-metric separable variograms were fitted to account for zonal and geometric space-time anisotropy. The final predictions were generated for time-slices of a 3D space-time cube, constructed in the R environment for statistical computing. The results show that the space-time regression model can explain a significant part of the variation in station-data (84%). MODIS LST 8-day (cloud-free) images are unbiased estimator of the daily temperature, but with relatively low precision (±4.1°C); however their added value is that they systematically improve detection of local changes in land surface temperature due to local meteorological conditions and/or active heat sources (urban areas, land cover classes). The results of 10–fold cross-validation show that use of spatio-temporal regression-kriging and incorporation of time-series of remote sensing images leads to significantly more accurate maps of temperature than if plain spatial techniques were used. The average (global) accuracy of mapping temperature was ±2.4°C. The regression-kriging explained 91% of variability in daily temperatures, compared to 44% for ordinary kriging. Further software advancement—interactive space-time variogram exploration and automated retrieval, resampling and filtering of MODIS images—are anticipated
    • 

    corecore