6,334 research outputs found

    Perceptual Quality Assessment of Omnidirectional Images as Moving Camera Videos

    Full text link
    Omnidirectional images (also referred to as static 360{\deg} panoramas) impose viewing conditions much different from those of regular 2D images. How do humans perceive image distortions in immersive virtual reality (VR) environments is an important problem which receives less attention. We argue that, apart from the distorted panorama itself, two types of VR viewing conditions are crucial in determining the viewing behaviors of users and the perceived quality of the panorama: the starting point and the exploration time. We first carry out a psychophysical experiment to investigate the interplay among the VR viewing conditions, the user viewing behaviors, and the perceived quality of 360{\deg} images. Then, we provide a thorough analysis of the collected human data, leading to several interesting findings. Moreover, we propose a computational framework for objective quality assessment of 360{\deg} images, embodying viewing conditions and behaviors in a delightful way. Specifically, we first transform an omnidirectional image to several video representations using different user viewing behaviors under different viewing conditions. We then leverage advanced 2D full-reference video quality models to compute the perceived quality. We construct a set of specific quality measures within the proposed framework, and demonstrate their promises on three VR quality databases.Comment: 11 pages, 11 figure, 9 tables. This paper has been accepted by IEEE Transactions on Visualization and Computer Graphic

    Non-contact hemodynamic imaging reveals the jugular venous pulse waveform

    Full text link
    Cardiovascular monitoring is important to prevent diseases from progressing. The jugular venous pulse (JVP) waveform offers important clinical information about cardiac health, but is not routinely examined due to its invasive catheterisation procedure. Here, we demonstrate for the first time that the JVP can be consistently observed in a non-contact manner using a novel light-based photoplethysmographic imaging system, coded hemodynamic imaging (CHI). While traditional monitoring methods measure the JVP at a single location, CHI's wide-field imaging capabilities were able to observe the jugular venous pulse's spatial flow profile for the first time. The important inflection points in the JVP were observed, meaning that cardiac abnormalities can be assessed through JVP distortions. CHI provides a new way to assess cardiac health through non-contact light-based JVP monitoring, and can be used in non-surgical environments for cardiac assessment.Comment: 10 pages, 8 figure

    UGC-VQA: Benchmarking Blind Video Quality Assessment for User Generated Content

    Full text link
    Recent years have witnessed an explosion of user-generated content (UGC) videos shared and streamed over the Internet, thanks to the evolution of affordable and reliable consumer capture devices, and the tremendous popularity of social media platforms. Accordingly, there is a great need for accurate video quality assessment (VQA) models for UGC/consumer videos to monitor, control, and optimize this vast content. Blind quality prediction of in-the-wild videos is quite challenging, since the quality degradations of UGC content are unpredictable, complicated, and often commingled. Here we contribute to advancing the UGC-VQA problem by conducting a comprehensive evaluation of leading no-reference/blind VQA (BVQA) features and models on a fixed evaluation architecture, yielding new empirical insights on both subjective video quality studies and VQA model design. By employing a feature selection strategy on top of leading VQA model features, we are able to extract 60 of the 763 statistical features used by the leading models to create a new fusion-based BVQA model, which we dub the \textbf{VID}eo quality \textbf{EVAL}uator (VIDEVAL), that effectively balances the trade-off between VQA performance and efficiency. Our experimental results show that VIDEVAL achieves state-of-the-art performance at considerably lower computational cost than other leading models. Our study protocol also defines a reliable benchmark for the UGC-VQA problem, which we believe will facilitate further research on deep learning-based VQA modeling, as well as perceptually-optimized efficient UGC video processing, transcoding, and streaming. To promote reproducible research and public evaluation, an implementation of VIDEVAL has been made available online: \url{https://github.com/tu184044109/VIDEVAL_release}.Comment: 13 pages, 11 figures, 11 table

    Benchmark 3D eye-tracking dataset for visual saliency prediction on stereoscopic 3D video

    Full text link
    Visual Attention Models (VAMs) predict the location of an image or video regions that are most likely to attract human attention. Although saliency detection is well explored for 2D image and video content, there are only few attempts made to design 3D saliency prediction models. Newly proposed 3D visual attention models have to be validated over large-scale video saliency prediction datasets, which also contain results of eye-tracking information. There are several publicly available eye-tracking datasets for 2D image and video content. In the case of 3D, however, there is still a need for large-scale video saliency datasets for the research community for validating different 3D-VAMs. In this paper, we introduce a large-scale dataset containing eye-tracking data collected from 61 stereoscopic 3D videos (and also 2D versions of those) and 24 subjects participated in a free-viewing test. We evaluate the performance of the existing saliency detection methods over the proposed dataset. In addition, we created an online benchmark for validating the performance of the existing 2D and 3D visual attention models and facilitate addition of new VAMs to the benchmark. Our benchmark currently contains 50 different VAMs

    Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics

    Full text link
    Natural spatiotemporal processes can be highly non-stationary in many ways, e.g. the low-level non-stationarity such as spatial correlations or temporal dependencies of local pixel values; and the high-level variations such as the accumulation, deformation or dissipation of radar echoes in precipitation forecasting. From Cramer's Decomposition, any non-stationary process can be decomposed into deterministic, time-variant polynomials, plus a zero-mean stochastic term. By applying differencing operations appropriately, we may turn time-variant polynomials into a constant, making the deterministic component predictable. However, most previous recurrent neural networks for spatiotemporal prediction do not use the differential signals effectively, and their relatively simple state transition functions prevent them from learning too complicated variations in spacetime. We propose the Memory In Memory (MIM) networks and corresponding recurrent blocks for this purpose. The MIM blocks exploit the differential signals between adjacent recurrent states to model the non-stationary and approximately stationary properties in spatiotemporal dynamics with two cascaded, self-renewed memory modules. By stacking multiple MIM blocks, we could potentially handle higher-order non-stationarity. The MIM networks achieve the state-of-the-art results on four spatiotemporal prediction tasks across both synthetic and real-world datasets. We believe that the general idea of this work can be potentially applied to other time-series forecasting tasks

    Learning to Predict Streaming Video QoE: Distortions, Rebuffering and Memory

    Full text link
    Mobile streaming video data accounts for a large and increasing percentage of wireless network traffic. The available bandwidths of modern wireless networks are often unstable, leading to difficulties in delivering smooth, high-quality video. Streaming service providers such as Netflix and YouTube attempt to adapt their systems to adjust in response to these bandwidth limitations by changing the video bitrate or, failing that, allowing playback interruptions (rebuffering). Being able to predict end user' quality of experience (QoE) resulting from these adjustments could lead to perceptually-driven network resource allocation strategies that would deliver streaming content of higher quality to clients, while being cost effective for providers. Existing objective QoE models only consider the effects on user QoE of video quality changes or playback interruptions. For streaming applications, adaptive network strategies may involve a combination of dynamic bitrate allocation along with playback interruptions when the available bandwidth reaches a very low value. Towards effectively predicting user QoE, we propose Video Assessment of TemporaL Artifacts and Stalls (Video ATLAS): a machine learning framework where we combine a number of QoE-related features, including objective quality features, rebuffering-aware features and memory-driven features to make QoE predictions. We evaluated our learning-based QoE prediction model on the recently designed LIVE-Netflix Video QoE Database which consists of practical playout patterns, where the videos are afflicted by both quality changes and rebuffering events, and found that it provides improved performance over state-of-the-art video quality metrics while generalizing well on different datasets. The proposed algorithm is made publicly available at http://live.ece.utexas.edu/research/Quality/VideoATLAS release_v2.rar.Comment: under review in Transactions on Image Processin

    Subjective Assessment of H.264 Compressed Stereoscopic Video

    Full text link
    The tremendous growth in 3D (stereo) imaging and display technologies has led to stereoscopic content (video and image) becoming increasingly popular. However, both the subjective and the objective evaluation of stereoscopic video content has not kept pace with the rapid growth of the content. Further, the availability of standard stereoscopic video databases is also quite limited. In this work, we attempt to alleviate these shortcomings. We present a stereoscopic video database and its subjective evaluation. We have created a database containing a set of 144 distorted videos. We limit our attention to H.264 compression artifacts. The distorted videos were generated using 6 uncompressed pristine videos of left and right views originally created by Goldmann et al. at EPFL [1]. Further, 19 subjects participated in the subjective assessment task. Based on the subjective study, we have formulated a relation between the 2D and stereoscopic subjective scores as a function of compression rate and depth range. We have also evaluated the performance of popular 2D and 3D image/video quality assessment (I/VQA) algorithms on our database.Comment: 5 pages, 4 figure

    What Can Spatiotemporal Characteristics of Movements in RAMIS Tell Us?

    Full text link
    Quantitative characterization of surgical movements can improve the quality of patient care by informing the development of new training protocols for surgeons, and the design and control of surgical robots. Here, we present a novel characterization of open and teleoperated suturing movements that is based on principles from computational motor control. We focus on the extensively-studied relationship between the speed of movement and its geometry. In three-dimensional movements, this relationship is defined by the one-sixth power law that relates between the speed, the curvature, and the torsion of movement trajectories. We fitted the parameters of the one-sixth power law to suturing movements of participants with different levels of surgical experience in open (using sensorized forceps) and teleoperated (using the da Vinci Research Kit / da Vinci Surgical System) conditions from two different datasets. We found that teleoperation significantly affected the parameters of the power law, and that there were large differences between different stages of movement. These results open a new avenue for studying the effect of teleoperation on the spatiotemporal characteristics of the movements of surgeons, and lay the foundation for the development of new algorithms for automatic segmentation of surgical tasks.Comment: Preprint of an article submitted for consideration in Journal of Medical Robotics Research, \c{opyright} 2017 copyright World Scientific Publishing Company, http://www.worldscientific.com/worldscinet/jmr

    Spatiotemporal Video Quality Assessment Method via Multiple Feature Mappings

    Get PDF
    Progressed video quality assessment (VQA) methods aim to evaluate the perceptual quality of videos in many applications but often prompt to increase computational complexity. Problems derive from the complexity of the distorted videos that are of significant concern in the communication industry, as well as the spatial-temporal content of the two-fold (spatial and temporal) distortion. Therefore, the findings of the study indicate that the information in the spatiotemporal slice (STS) images are useful in measuring video distortion. This paper mainly focuses on developing on a full reference video quality assessment algorithm estimator that integrates several features of spatiotemporal slices (STSS) of frames to form a high-performance video quality. This research work aims to evaluate video quality by utilizing several VQA databases by the following steps: (1) we first arrange the reference and test video sequences into a spatiotemporal slice representation. A collection of spatiotemporal feature maps were computed on each reference-test video. These response features are then processed by using a Structural Similarity (SSIM) to form a local frame quality.  (2) To further enhance the quality assessment, we combine the spatial feature maps with the spatiotemporal feature maps and propose the VQA model, named multiple map similarity feature deviation (MMSFD-STS). (3) We apply a sequential pooling strategy to assemble the quality indices of frames in the video quality scoring. (4) Extensive evaluations on video quality databases show that the proposed VQA algorithm achieves better/competitive performance as compared with other state- of- the- art methods

    Can high-density human collective motion be forecasted by spatiotemporal fluctuations?

    Full text link
    Concerts, protests, and sporting events are occurring with increasing frequency and magnitude. The extreme physical conditions common to these events are known to cause injuries and loss-of-life due to the emergence of collective motion such as crowd crush, turbulence, and density waves. Mathematical models of human crowds aimed at enhancing crowd safety by understanding these phenomena are developed with input from a variety of disciplines. However, model validation is challenged by a lack of high-quality empirical data and ethical constraints surrounding human crowd research. Consequently, generalized model-based approach for real-time monitoring/risk-assessment of crowd collective motion remains an open problem. Here, we take a model-free approach to crowd analysis and show that emergent collective motion can be forecasted directly from video data. We use mode analysis methods from material science and concepts from non-equilibrium physics to study footage of a human crowd at an Oasis rock concert. We analyze the attendees positional fluctuations during a period of crowd turbulence to predict the spatial patterns of an emergent human density wave. In addition to predicting spatial patterns of collective motion, we also identify and measure temporal patterns that precede the density wave and forecast its appearance by 1~s. Looking ahead, widening this forecasting window beyond 1~s will enable new computer vision technologies for real-time risk-assessment of emergent human collective motion.Comment: Main Text and Supplementary Information (Combined 20 pages, 12 Figures
    • …
    corecore