167 research outputs found

    Towards a Unified Understanding of Data-Driven Support for Emergency Medical Service Logistics

    Get PDF
    Time-critical medical emergencies challenge emergency medical service (EMS) systems worldwide every day. In order to respond to these incidents as soon as possible, EMS logistics\u27 approaches can help locating and dispatching ambulances. Many of these approaches use estimates for the demand as well as the driving, service and turnaround times. In order to determine useful solutions and make informed decisions, reliable forecasts are necessary that take the characteristics and constraints of the planning problems at different levels into account. While many different approaches have been presented and tested in literature, a common understanding is still missing. This paper therefore proposes a taxonomy on EMS forecasting that distinguishes between medical emergencies and patient transports, demand and time intervals in the response process, as well as the three planning levels strategic, tactical and operational. In addition, an illustrative example and a research agenda are presented based on the findings for the taxonomy

    Spatial modelling of emergency service response times

    Get PDF
    This article concerns the statistical modelling of emergency service response times. We apply advanced methods from spatial survival analysis to deliver inference for data collected by the London Fire Brigade on response times to reported dwelling fires. Existing approaches to the analysis of these data have been mainly descriptive; we describe and demonstrate the advantages of a more sophisticated approach. Our final parametric proportional hazards model includes harmonic regression terms to describe how response time varies with time-of-day and shared spatially correlated frailties on an auxiliary grid for computational efficiency. We investigate the short-term impact of fire station closures in 2014. Whilst the London Fire Brigade are working hard to keep response times down, our findings suggest there is a limit to what can be achieved logistically: the present article identifies areas around the now closed Belsize, Downham, Kingsland, Knightsbridge, Silvertown, Southwark, Wesminster and Woolwich fire stations in which there should perhaps be some concern as to the provision of fire services

    Geo-Information Technology and Its Applications

    Get PDF
    Geo-information technology has been playing an ever more important role in environmental monitoring, land resource quantification and mapping, geo-disaster damage and risk assessment, urban planning and smart city development. This book focuses on the fundamental and applied research in these domains, aiming to promote exchanges and communications, share the research outcomes of scientists worldwide and to put these achievements better social use. This Special Issue collects fourteen high-quality research papers and is expected to provide a useful reference and technical support for graduate students, scientists, civil engineers and experts of governments to valorize scientific research

    Predicting the temporal activity patterns of new venues

    Get PDF
    Estimating revenue and business demand of a newly opened venue is paramount as these early stages often involve critical decisions such as first rounds of staffing and resource allocation. Traditionally, this estimation has been performed through coarse-grained measures such as observing numbers in local venues or venues at similar places (e.g., coffee shops around another station in the same city). The advent of crowdsourced data from devices and services carried by individuals on a daily basis has opened up the possibility of performing better predictions of temporal visitation patterns for locations and venues. In this paper, using mobility data from Foursquare, a location-centric platform, we treat venue categories as proxies for urban activities and analyze how they become popular over time. The main contribution of this work is a prediction framework able to use characteristic temporal signatures of places together with k-nearest neighbor metrics capturing similarities among urban regions, to forecast weekly popularity dynamics of a new venue establishment in a city neighborhood. We further show how we are able to forecast the popularity of the new venue after one month following its opening by using locality and temporal similarity as features. For the evaluation of our approach we focus on London. We show that temporally similar areas of the city can be successfully used as inputs of predictions of the visit patterns of new venues, with an improvement of 41% compared to a random selection of wards as a training set for the prediction task. We apply these concepts of temporally similar areas and locality to the real-time predictions related to new venues and show that these features can effectively be used to predict the future trends of a venue. Our findings have the potential to impact the design of location-based technologies and decisions made by new business owners

    Predicting the temporal activity patterns of new venues.

    Get PDF
    Estimating revenue and business demand of a newly opened venue is paramount as these early stages often involve critical decisions such as first rounds of staffing and resource allocation. Traditionally, this estimation has been performed through coarse-grained measures such as observing numbers in local venues or venues at similar places (e.g., coffee shops around another station in the same city). The advent of crowdsourced data from devices and services carried by individuals on a daily basis has opened up the possibility of performing better predictions of temporal visitation patterns for locations and venues. In this paper, using mobility data from Foursquare, a location-centric platform, we treat venue categories as proxies for urban activities and analyze how they become popular over time. The main contribution of this work is a prediction framework able to use characteristic temporal signatures of places together with k-nearest neighbor metrics capturing similarities among urban regions, to forecast weekly popularity dynamics of a new venue establishment in a city neighborhood. We further show how we are able to forecast the popularity of the new venue after one month following its opening by using locality and temporal similarity as features. For the evaluation of our approach we focus on London. We show that temporally similar areas of the city can be successfully used as inputs of predictions of the visit patterns of new venues, with an improvement of 41% compared to a random selection of wards as a training set for the prediction task. We apply these concepts of temporally similar areas and locality to the real-time predictions related to new venues and show that these features can effectively be used to predict the future trends of a venue. Our findings have the potential to impact the design of location-based technologies and decisions made by new business owners

    GIS in Healthcare

    Get PDF
    The landscape of healthcare is dynamic, gradually becoming more complicated with factors beyond simple supply and demand. Similar to the diversity of social, political and economic contexts, the practical utilization of healthcare resources also varies around the world. However, the spatial components of these contexts, along with aspects of supply and demand, can reveal a common theme among these factors. This book presents advancements in GIS applications that reveal the complexity of and solutions for a dynamic healthcare landscape

    ARTERIAL PROBABILISTIC TRAFFIC MODELING AND REAL-TIME TRAVEL TIME PREDICTION WITH VEHICLE PROBE DATA USING MACHINE LEARNING

    Get PDF
    This study proposes a probabilistic modeling framework for the estimation and prediction of link-based arterial travel time distribution using GPS data. The spatiotemporal correlations of the network are modeled using a directional acyclic graphical model, and several external variables in the prediction model are included to yield a better prediction in a variety of situations. This study also aims to investigate the effects of each factor on the travel time and the uncertainty associated with it. In the proposed model, factors such as weather conditions, seasons, time of day, and day of the week are added as external variables in the graphical model. After determining the structure of the model, Streaming Variational Bayes (SVB) is used for training and parameter inference; this offers a valuable option when constant streaming data is utilized. SVB adaptively changes its parameters gradually with a lower computational cost, which makes the process less time-consuming and more efficient. The analysis shows that incorporating external variables can improve the model performance. The data used in this study is INRIX vehicle trajectory raw data from four months - February, June, July, and October of 2015 - which makes it possible to take into account the effects of seasons and weather conditions on travel time and its uncertainty. One of the products of this study is a framework for vehicle trajectory data cleaning process including trip identification, removing outliers, and cleaning the trips data. Once the data are cleaned and ready to use, they should be mapped to the roads. The Hidden Markov Model (HMM) map matching algorithm is used to map the GPS latitude/longitude data to the Open Street Map (OSM) base map and find the traversed links between each pair of GPS points of vehicle trajectories. Finally, a novel procedure to compare any travel time prediction model with any available commercial routing API is proposed and tested to compare the proposed model with Google API
    corecore