106 research outputs found

    Representing, storing and mining moving objects data

    Get PDF
    Data about moving objects have been collected in huge amounts due to the proliferation of mobile devices, which capture the position of objects over time. Studies about moving objects have been developed as a specific research area of Geographic Information Systems. Those systems are designed to process traditional, static or slowly changing, geospatial data. However, moving objects have inherent a dynamism that requires different approaches to data storage and analysis. This paper presents a review of the key concepts associated to moving objects and their characteristics, as well as the approaches proposed to store data about moving objects. For the analysis of moving objects, an overview of the existing data mining techniques and some future guidelines are also presented

    A Spatial Data Model for Moving Object Databases

    Get PDF

    Using spatiotemporal patterns to qualitatively represent and manage dynamic situations of interest : a cognitive and integrative approach

    Get PDF
    Les situations spatio-temporelles dynamiques sont des situations qui évoluent dans l’espace et dans le temps. L’être humain peut identifier des configurations de situations dans son environnement et les utilise pour prendre des décisions. Ces configurations de situations peuvent aussi être appelées « situations d’intérêt » ou encore « patrons spatio-temporels ». En informatique, les situations sont obtenues par des systèmes d’acquisition de données souvent présents dans diverses industries grâce aux récents développements technologiques et qui génèrent des bases de données de plus en plus volumineuses. On relève un problème important dans la littérature lié au fait que les formalismes de représentation utilisés sont souvent incapables de représenter des phénomènes spatiotemporels dynamiques et complexes qui reflètent la réalité. De plus, ils ne prennent pas en considération l’appréhension cognitive (modèle mental) que l’humain peut avoir de son environnement. Ces facteurs rendent difficile la mise en œuvre de tels modèles par des agents logiciels. Dans cette thèse, nous proposons un nouveau modèle de représentation des situations d’intérêt s’appuyant sur la notion des patrons spatiotemporels. Notre approche utilise les graphes conceptuels pour offrir un aspect qualitatif au modèle de représentation. Le modèle se base sur les notions d’événement et d’état pour représenter des phénomènes spatiotemporels dynamiques. Il intègre la notion de contexte pour permettre aux agents logiciels de raisonner avec les instances de patrons détectés. Nous proposons aussi un outil de génération automatisée des relations qualitatives de proximité spatiale en utilisant un classificateur flou. Finalement, nous proposons une plateforme de gestion des patrons spatiotemporels pour faciliter l’intégration de notre modèle dans des applications industrielles réelles. Ainsi, les contributions principales de notre travail sont : Un formalisme de représentation qualitative des situations spatiotemporelles dynamiques en utilisant des graphes conceptuels. ; Une approche cognitive pour la définition des patrons spatio-temporels basée sur l’intégration de l’information contextuelle. ; Un outil de génération automatique des relations spatiales qualitatives de proximité basé sur les classificateurs neuronaux flous. ; Une plateforme de gestion et de détection des patrons spatiotemporels basée sur l’extension d’un moteur de traitement des événements complexes (Complex Event Processing).Dynamic spatiotemporal situations are situations that evolve in space and time. They are part of humans’ daily life. One can be interested in a configuration of situations occurred in the environment and can use it to make decisions. In the literature, such configurations are referred to as “situations of interests” or “spatiotemporal patterns”. In Computer Science, dynamic situations are generated by large scale data acquisition systems which are deployed everywhere thanks to recent technological advances. Spatiotemporal pattern representation is a research subject which gained a lot of attraction from two main research areas. In spatiotemporal analysis, various works extended query languages to represent patterns and to query them from voluminous databases. In Artificial Intelligence, predicate-based models represent spatiotemporal patterns and detect their instances using rule-based mechanisms. Both approaches suffer several shortcomings. For example, they do not allow for representing dynamic and complex spatiotemporal phenomena due to their limited expressiveness. Furthermore, they do not take into account the human’s mental model of the environment in their representation formalisms. This limits the potential of building agent-based solutions to reason about these patterns. In this thesis, we propose a novel approach to represent situations of interest using the concept of spatiotemporal patterns. We use Conceptual Graphs to offer a qualitative representation model of these patterns. Our model is based on the concepts of spatiotemporal events and states to represent dynamic spatiotemporal phenomena. It also incorporates contextual information in order to facilitate building the knowledge base of software agents. Besides, we propose an intelligent proximity tool based on a neuro-fuzzy classifier to support qualitative spatial relations in the pattern model. Finally, we propose a framework to manage spatiotemporal patterns in order to facilitate the integration of our pattern representation model to existing applications in the industry. The main contributions of this thesis are as follows: A qualitative approach to model dynamic spatiotemporal situations of interest using Conceptual Graphs. ; A cognitive approach to represent spatiotemporal patterns by integrating contextual information. ; An automated tool to generate qualitative spatial proximity relations based on a neuro-fuzzy classifier. ; A platform for detection and management of spatiotemporal patterns using an extension of a Complex Event Processing engine

    Symbolic trajectories

    Get PDF
    Due to the proliferation of GPS enabled devices in vehicles or with people, large amounts of position data are recorded every day and the management of such mobility data, also called trajectories, is a very active research eld. A lot of e ort has gone into discovering "semantics" from the raw geometric trajectories by relating them to the spatial environment or fi nding patterns, e.g., by data mining techniques. A question is how the resulting "meaningful" trajectories can be represented or further queried. In this paper, we propose a very simple generic model called symbolic trajectory to capture a wide range of of meanings derived from a geometric trajectory. Essentially a symbolic trajectory is just a time dependent label; variants have sets of labels, places, or sets of places. They are modeled as abstract data types and integrated into a well established framework of data types and operations for moving objects. Symbolic trajectories can represent, for exam- ple, the names of roads traversed obtained by map matching, transportation modes, speed pro le, cells of a cellular network, behaviours of animals, cinemas within 2 kms distance, etc. Besides the model, the core technical contribution of the paper is a language for pattern matching and rewriting of symbolic trajectories. A symbolic trajectory can be represented as a sequence of pairs (called units) consisting of a time interval and a label. A pattern consists of unit patterns (speci cations for time interval and/or label) and wildcards, matching units and sequences of units, respectively, as well as regular expressions over such elements. It may further contain variables that can be used in conditions and in rewriting. Conditions and expressions in rewriting may use arbitrary operations available for querying in the host DBMS environment which makes the language extensible and quite powerful. We formally de ne the data model and syntax and semantics of the pattern language. Query operations are off ered to integrate pattern matching, rewriting, and classi cation of symbolic trajectories into a DBMS querying environment. Implementation of the model using finite state machines is described in detail. An experimental evaluation demonstrates the effi ciency of the implementation. In particular, it shows dramatic improvements in storage space and response time in a comparison of symbolic and geometric trajectories for some simple queries that can be executed on both symbolic and raw trajectories

    Multi-scale window specification over streaming trajectories

    Get PDF
    Enormous amounts of positional information are collected by monitoring applications in domains such as fleet management cargo transport wildlife protection etc. With the advent of modern location-based services processing such data mostly focuses on providing real-time response to a variety of user requests in continuous and scalable fashion. An important class of such queries concerns evolving trajectories that continuously trace the streaming locations of moving objects like GPS-equipped vehicles commodities with RFID\u27s people with smartphones etc. In this work we propose an advanced windowing operator that enables online incremental examination of recent motion paths at multiple resolutions for numerous point entities. When applied against incoming positions this window can abstract trajectories at coarser representations towards the past while retaining progressively finer features closer to the present. We explain the semantics of such multi-scale sliding windows through parameterized functions that reflect the sequential nature of trajectories and can effectively capture their spatiotemporal properties. Such window specification goes beyond its usual role for non-blocking processing of multiple concurrent queries. Actually it can offer concrete subsequences from each trajectory thus preserving continuity in time and contiguity in space along the respective segments. Further we suggest language extensions in order to express characteristic spatiotemporal queries using windows. Finally we discuss algorithms for nested maintenance of multi-scale windows and evaluate their efficiency against streaming positional data offering empirical evidence of their benefits to online trajectory processing

    Towards Mobility Data Science (Vision Paper)

    Full text link
    Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated significant impact in various domains including traffic management, urban planning, and health sciences. In this paper, we present the emerging domain of mobility data science. Towards a unified approach to mobility data science, we envision a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state of the art and describe open challenges for the research community in the coming years.Comment: Updated arXiv metadata to include two authors that were missing from the metadata. PDF has not been change
    • …
    corecore