744 research outputs found

    Spatio-temporal Video Re-localization by Warp LSTM

    Full text link
    The need for efficiently finding the video content a user wants is increasing because of the erupting of user-generated videos on the Web. Existing keyword-based or content-based video retrieval methods usually determine what occurs in a video but not when and where. In this paper, we make an answer to the question of when and where by formulating a new task, namely spatio-temporal video re-localization. Specifically, given a query video and a reference video, spatio-temporal video re-localization aims to localize tubelets in the reference video such that the tubelets semantically correspond to the query. To accurately localize the desired tubelets in the reference video, we propose a novel warp LSTM network, which propagates the spatio-temporal information for a long period and thereby captures the corresponding long-term dependencies. Another issue for spatio-temporal video re-localization is the lack of properly labeled video datasets. Therefore, we reorganize the videos in the AVA dataset to form a new dataset for spatio-temporal video re-localization research. Extensive experimental results show that the proposed model achieves superior performances over the designed baselines on the spatio-temporal video re-localization task

    AC-SUM-GAN: Connecting Actor-Critic and Generative Adversarial Networks for Unsupervised Video Summarization

    Get PDF
    This paper presents a new method for unsupervised video summarization. The proposed architecture embeds an Actor-Critic model into a Generative Adversarial Network and formulates the selection of important video fragments (that will be used to form the summary) as a sequence generation task. The Actor and the Critic take part in a game that incrementally leads to the selection of the video key-fragments, and their choices at each step of the game result in a set of rewards from the Discriminator. The designed training workflow allows the Actor and Critic to discover a space of actions and automatically learn a policy for key-fragment selection. Moreover, the introduced criterion for choosing the best model after the training ends, enables the automatic selection of proper values for parameters of the training process that are not learned from the data (such as the regularization factor σ). Experimental evaluation on two benchmark datasets (SumMe and TVSum) demonstrates that the proposed AC-SUM-GAN model performs consistently well and gives SoA results in comparison to unsupervised methods, that are also competitive with respect to supervised methods

    Feature discovery and visualization of robot mission data using convolutional autoencoders and Bayesian nonparametric topic models

    Full text link
    The gap between our ability to collect interesting data and our ability to analyze these data is growing at an unprecedented rate. Recent algorithmic attempts to fill this gap have employed unsupervised tools to discover structure in data. Some of the most successful approaches have used probabilistic models to uncover latent thematic structure in discrete data. Despite the success of these models on textual data, they have not generalized as well to image data, in part because of the spatial and temporal structure that may exist in an image stream. We introduce a novel unsupervised machine learning framework that incorporates the ability of convolutional autoencoders to discover features from images that directly encode spatial information, within a Bayesian nonparametric topic model that discovers meaningful latent patterns within discrete data. By using this hybrid framework, we overcome the fundamental dependency of traditional topic models on rigidly hand-coded data representations, while simultaneously encoding spatial dependency in our topics without adding model complexity. We apply this model to the motivating application of high-level scene understanding and mission summarization for exploratory marine robots. Our experiments on a seafloor dataset collected by a marine robot show that the proposed hybrid framework outperforms current state-of-the-art approaches on the task of unsupervised seafloor terrain characterization.Comment: 8 page
    • …
    corecore