360 research outputs found

    CT Scanning

    Get PDF
    Since its introduction in 1972, X-ray computed tomography (CT) has evolved into an essential diagnostic imaging tool for a continually increasing variety of clinical applications. The goal of this book was not simply to summarize currently available CT imaging techniques but also to provide clinical perspectives, advances in hybrid technologies, new applications other than medicine and an outlook on future developments. Major experts in this growing field contributed to this book, which is geared to radiologists, orthopedic surgeons, engineers, and clinical and basic researchers. We believe that CT scanning is an effective and essential tools in treatment planning, basic understanding of physiology, and and tackling the ever-increasing challenge of diagnosis in our society

    腹部CT像上の複数オブジェクトのセグメンテーションのための統計的手法に関する研究

    Get PDF
    Computer aided diagnosis (CAD) is the use of a computer-generated output as an auxiliary tool for the assistance of efficient interpretation and accurate diagnosis. Medical image segmentation has an essential role in CAD in clinical applications. Generally, the task of medical image segmentation involves multiple objects, such as organs or diffused tumor regions. Moreover, it is very unfavorable to segment these regions from abdominal Computed Tomography (CT) images because of the overlap in intensity and variability in position and shape of soft tissues. In this thesis, a progressive segmentation framework is proposed to extract liver and tumor regions from CT images more efficiently, which includes the steps of multiple organs coarse segmentation, fine segmentation, and liver tumors segmentation. Benefit from the previous knowledge of the shape and its deformation, the Statistical shape model (SSM) method is firstly utilized to segment multiple organs regions robustly. In the process of building an SSM, the correspondence of landmarks is crucial to the quality of the model. To generate a more representative prototype of organ surface, a k-mean clustering method is proposed. The quality of the SSMs, which is measured by generalization ability, specificity, and compactness, was improved. We furtherly extend the shapes correspondence to multiple objects. A non-rigid iterative closest point surface registration process is proposed to seek more properly corresponded landmarks across the multi-organ surfaces. The accuracy of surface registration was improved as well as the model quality. Moreover, to localize the abdominal organs simultaneously, we proposed a random forest regressor cooperating intensity features to predict the position of multiple organs in the CT image. The regions of the organs are substantially restrained using the trained shape models. The accuracy of coarse segmentation using SSMs was increased by the initial information of organ positions.Consequently, a pixel-wise segmentation using the classification of supervoxels is applied for the fine segmentation of multiple organs. The intensity and spatial features are extracted from each supervoxels and classified by a trained random forest. The boundary of the supervoxels is closer to the real organs than the previous coarse segmentation. Finally, we developed a hybrid framework for liver tumor segmentation in multiphase images. To deal with these issues of distinguishing and delineating tumor regions and peripheral tissues, this task is accomplished in two steps: a cascade region-based convolutional neural network (R-CNN) with a refined head is trained to locate the bounding boxes that contain tumors, and a phase-sensitive noise filtering is introduced to refine the following segmentation of tumor regions conducted by a level-set-based framework. The results of tumor detection show the adjacent tumors are successfully separated by the improved cascaded R-CNN. The accuracy of tumor segmentation is also improved by our proposed method. 26 cases of multi-phase CT images were used to validate our proposed method for the segmentation of liver tumors. The average precision and recall rates for tumor detection are 76.8% and 84.4%, respectively. The intersection over union, true positive rate, and false positive rate for tumor segmentation are 72.7%, 76.2%, and 4.75%, respectively.九州工業大学博士学位論文 学位記番号: 工博甲第546号 学位授与年月日: 令和4年3月25日1 Introduction|2 Literature Review|3 Statistical Shape Model Building|4 Multi-organ Segmentation|5 Liver Tumors Segmentation|6 Summary and Outlook九州工業大学令和3年

    Improved Image Guidance in TACE Procedures

    Get PDF
    Purpose of the work in this thesis is to improve the image guidance in TACE procedures. More specifically, we intend to develop and evaluate technology that permits dynamic roadmapping based on a 3D model of the liver vasculature

    Imaging Sensors and Applications

    Get PDF
    In past decades, various sensor technologies have been used in all areas of our lives, thus improving our quality of life. In particular, imaging sensors have been widely applied in the development of various imaging approaches such as optical imaging, ultrasound imaging, X-ray imaging, and nuclear imaging, and contributed to achieve high sensitivity, miniaturization, and real-time imaging. These advanced image sensing technologies play an important role not only in the medical field but also in the industrial field. This Special Issue covers broad topics on imaging sensors and applications. The scope range of imaging sensors can be extended to novel imaging sensors and diverse imaging systems, including hardware and software advancements. Additionally, biomedical and nondestructive sensing applications are welcome

    Intraoperative Quantification of Bone Perfusion in Lower Extremity Injury Surgery

    Get PDF
    Orthopaedic surgery is one of the most common surgical categories. In particular, lower extremity injuries sustained from trauma can be complex and life-threatening injuries that are addressed through orthopaedic trauma surgery. Timely evaluation and surgical debridement following lower extremity injury is essential, because devitalized bones and tissues will result in high surgical site infection rates. However, the current clinical judgment of what constitutes “devitalized tissue” is subjective and dependent on surgeon experience, so it is necessary to develop imaging techniques for guiding surgical debridement, in order to control infection rates and to improve patient outcome. In this thesis work, computational models of fluorescence-guided debridement in lower extremity injury surgery will be developed, by quantifying bone perfusion intraoperatively using Dynamic contrast-enhanced fluorescence imaging (DCE-FI) system. Perfusion is an important factor of tissue viability, and therefore quantifying perfusion is essential for fluorescence-guided debridement. In Chapters 3-7 of this thesis, we explore the performance of DCE-FI in quantifying perfusion from benchtop to translation: We proposed a modified fluorescent microsphere quantification technique using cryomacrotome in animal model. This technique can measure bone perfusion in periosteal and endosteal separately, and therefore to validate bone perfusion measurements obtained by DCE-FI; We developed pre-clinical rodent contaminated fracture model to correlate DCE-FI with infection risk, and compare with multi-modality scanning; Furthermore in clinical studies, we investigated first-pass kinetic parameters of DCE-FI and arterial input functions for characterization of perfusion changes during lower limb amputation surgery; We conducted the first in-human use of dynamic contrast-enhanced texture analysis for orthopaedic trauma classification, suggesting that spatiotemporal features from DCE-FI can classify bone perfusion intraoperatively with high accuracy and sensitivity; We established clinical machine learning infection risk predictive model on open fracture surgery, where pixel-scaled prediction on infection risk will be accomplished. In conclusion, pharmacokinetic and spatiotemporal patterns of dynamic contrast-enhanced imaging show great potential for quantifying bone perfusion and prognosing bone infection. The thesis work will decrease surgical site infection risk and improve successful rates of lower extremity injury surgery

    Infective/inflammatory disorders

    Get PDF

    The radiological investigation of musculoskeletal tumours : chairperson's introduction

    No full text
    corecore