59 research outputs found

    SimpleTrack:Adaptive Trajectory Compression with Deterministic Projection Matrix for Mobile Sensor Networks

    Full text link
    Some mobile sensor network applications require the sensor nodes to transfer their trajectories to a data sink. This paper proposes an adaptive trajectory (lossy) compression algorithm based on compressive sensing. The algorithm has two innovative elements. First, we propose a method to compute a deterministic projection matrix from a learnt dictionary. Second, we propose a method for the mobile nodes to adaptively predict the number of projections needed based on the speed of the mobile nodes. Extensive evaluation of the proposed algorithm using 6 datasets shows that our proposed algorithm can achieve sub-metre accuracy. In addition, our method of computing projection matrices outperforms two existing methods. Finally, comparison of our algorithm against a state-of-the-art trajectory compression algorithm show that our algorithm can reduce the error by 10-60 cm for the same compression ratio

    Heterogeneous Networked Data Recovery from Compressive Measurements Using a Copula Prior

    Get PDF
    Large-scale data collection by means of wireless sensor network and internet-of-things technology poses various challenges in view of the limitations in transmission, computation, and energy resources of the associated wireless devices. Compressive data gathering based on compressed sensing has been proven a well-suited solution to the problem. Existing designs exploit the spatiotemporal correlations among data collected by a specific sensing modality. However, many applications, such as environmental monitoring, involve collecting heterogeneous data that are intrinsically correlated. In this study, we propose to leverage the correlation from multiple heterogeneous signals when recovering the data from compressive measurements. To this end, we propose a novel recovery algorithm---built upon belief-propagation principles---that leverages correlated information from multiple heterogeneous signals. To efficiently capture the statistical dependencies among diverse sensor data, the proposed algorithm uses the statistical model of copula functions. Experiments with heterogeneous air-pollution sensor measurements show that the proposed design provides significant performance improvements against state-of-the-art compressive data gathering and recovery schemes that use classical compressed sensing, compressed sensing with side information, and distributed compressed sensing.Comment: accepted to IEEE Transactions on Communication

    Data aggregation and recovery for the Internet of Things: A compressive demixing approach

    Get PDF
    Large-scale wireless sensor networks (WSNs) and Internet-of-Things (IoT) applications involve diverse sensing devices collecting and transmitting massive amounts of heterogeneous data. In this paper, we propose a novel compressive data aggregation and recovery mechanism that reduces the global communication cost without introducing computational overhead at the network nodes. Following the principles of compressive demixing, each node of the network collects measurement readings from multiple sources and mixes them with readings from other nodes into a single low-dimensional measurement vector, which is then relayed to other nodes; the constituent signals are recovered at the sink using convex optimization. Our design achieves significant reduction in the overall network data rates compared to prior schemes based on (distributed) compressed sensing or compressed sensing with (multiple) side information. Experiments using real large-scale air-quality data demonstrate the superior performance of the proposed framework against state-of-the-art solutions, with and without the presence of measurement and transmission noise

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    A Survey on Energy-Efficient Strategies in Static Wireless Sensor Networks

    Get PDF
    A comprehensive analysis on the energy-efficient strategy in static Wireless Sensor Networks (WSNs) that are not equipped with any energy harvesting modules is conducted in this article. First, a novel generic mathematical definition of Energy Efficiency (EE) is proposed, which takes the acquisition rate of valid data, the total energy consumption, and the network lifetime of WSNs into consideration simultaneously. To the best of our knowledge, this is the first time that the EE of WSNs is mathematically defined. The energy consumption characteristics of each individual sensor node and the whole network are expounded at length. Accordingly, the concepts concerning EE, namely the Energy-Efficient Means, the Energy-Efficient Tier, and the Energy-Efficient Perspective, are proposed. Subsequently, the relevant energy-efficient strategies proposed from 2002 to 2019 are tracked and reviewed. Specifically, they respectively are classified into five categories: the Energy-Efficient Media Access Control protocol, the Mobile Node Assistance Scheme, the Energy-Efficient Clustering Scheme, the Energy-Efficient Routing Scheme, and the Compressive Sensing--based Scheme. A detailed elaboration on both of the basic principle and the evolution of them is made. Finally, further analysis on the categories is made and the related conclusion is drawn. To be specific, the interdependence among them, the relationships between each of them, and the Energy-Efficient Means, the Energy-Efficient Tier, and the Energy-Efficient Perspective are analyzed in detail. In addition, the specific applicable scenarios for each of them and the relevant statistical analysis are detailed. The proportion and the number of citations for each category are illustrated by the statistical chart. In addition, the existing opportunities and challenges facing WSNs in the context of the new computing paradigm and the feasible direction concerning EE in the future are pointed out

    Data Compression in Multi-Hop Large-Scale Wireless Sensor Networks

    Get PDF
    Data collection from a multi-hop large-scale outdoor WSN deployment for environmental monitoring is full of challenges due to the severe resource constraints on small battery-operated motes (e.g., bandwidth, memory, power, and computing capacity) and the highly dynamic wireless link conditions in an outdoor communication environment. We present a compressed sensing approach which can recover the sensing data at the sink with good accuracy when very few packets are collected, thus leading to a significant reduction of the network traffic and an extension of the WSN lifetime. Interplaying with the dynamic WSN routing topology, the proposed approach is efficient and simple to implement on the resource-constrained motes without motes storing of a part of random measurement matrix, as opposed to other existing compressed sensing based schemes. We provide a systematic method via machine learning to find a suitable representation basis, for the given WSN deployment and data field, which is both sparse and incoherent with the measurement matrix in the compressed sensing. We validate our approach and evaluate its performance using our real-world multi-hop WSN testbed deployment in situ in collecting the humidity and soil moisture data. The results show that our approach significantly outperforms three other compressed sensing based algorithms regarding the data recovery accuracy for the entire WSN observation field under drastically reduced communication costs. For some WSN scenarios, compressed sensing may not be applicable. Therefore we also design a generalized predictive coding framework for unified lossless and lossy data compression. In addition, we devise a novel algorithm for lossless compression to significantly improve data compression performance for variouSs data collections and applications in WSNs. Rigorous simulations show our proposed framework and compression algorithm outperform several recent popular compression algorithms for wireless sensor networks such as LEC, S-LZW and LTC using various real-world sensor data sets, demonstrating the merit of the proposed framework for unified temporal lossless and lossy data compression in WSNs

    Adaptive sampling for spatial prediction in environmental monitoring using wireless sensor networks: A review

    Full text link
    © 2018 IEEE. The paper presents a review of the spatial prediction problem in the environmental monitoring applications by utilizing stationary and mobile robotic wireless sensor networks. First, the problem of selecting the best subset of stationary wireless sensors monitoring environmental phenomena in terms of sensing quality is surveyed. Then, predictive inference approaches and sampling algorithms for mobile sensing agents to optimally observe spatially physical processes in the existing works are analysed
    • …
    corecore