2,284 research outputs found

    SVS-JOIN : efficient spatial visual similarity join for geo-multimedia

    Get PDF
    In the big data era, massive amount of multimedia data with geo-tags has been generated and collected by smart devices equipped with mobile communications module and position sensor module. This trend has put forward higher request on large-scale geo-multimedia retrieval. Spatial similarity join is one of the significant problems in the area of spatial database. Previous works focused on spatial textual document search problem, rather than geo-multimedia retrieval. In this paper, we investigate a novel geo-multimedia retrieval paradigm named spatial visual similarity join (SVS-JOIN for short), which aims to search similar geo-image pairs in both aspects of geo-location and visual content. Firstly, the definition of SVS-JOIN is proposed and then we present the geographical similarity and visual similarity measurement. Inspired by the approach for textual similarity join, we develop an algorithm named SVS-JOIN B by combining the PPJOIN algorithm and visual similarity. Besides, an extension of it named SVS-JOIN G is developed, which utilizes spatial grid strategy to improve the search efficiency. To further speed up the search, a novel approach called SVS-JOIN Q is carefully designed, in which a quadtree and a global inverted index are employed. Comprehensive experiments are conducted on two geo-image datasets and the results demonstrate that our solution can address the SVS-JOIN problem effectively and efficiently

    Parallel and Distributed Processing of Spatial Preference Queries using Keywords

    Get PDF
    published_or_final_versio

    Feat-SKSJ: Fast and Exact Algorithm for Top-k Spatial-Keyword Similarity Join

    Full text link
    Due to the proliferation of GPS-enabled mobile devices and IoT environments, location-based services are generating a large number of objects that contain both spatial and keyword information, and spatial-keyword databases are receiving much attention. This paper addresses the problem of top-k spatial-keyword similarity join, which outputs k object pairs with the highest similarity. This query is a primitive operator for important applications, including duplicate detection, recommendation, and clustering. The main bottleneck of the top-k spatial-keyword similarity join is to compute the similarity of a given object pair. To avoid this computation as much as possible, a state-of-the-art algorithm utilizes a filter that can skip the exact similarity computation of a given pair. However, this algorithm suffers from a loose threshold at the first stage, a high filtering cost, and the impossibility of filtering many pairs in a batch. We propose Feat-SKSJ, which removes these drawbacks and quickly outputs the exact result. Extensive experiments on real datasets show that Feat-SKSJ is significantly faster than the state-of-the-art algorithm

    Location- and keyword-based querying of geo-textual data: a survey

    Get PDF
    With the broad adoption of mobile devices, notably smartphones, keyword-based search for content has seen increasing use by mobile users, who are often interested in content related to their geographical location. We have also witnessed a proliferation of geo-textual content that encompasses both textual and geographical information. Examples include geo-tagged microblog posts, yellow pages, and web pages related to entities with physical locations. Over the past decade, substantial research has been conducted on integrating location into keyword-based querying of geo-textual content in settings where the underlying data is assumed to be either relatively static or is assumed to stream into a system that maintains a set of continuous queries. This paper offers a survey of both the research problems studied and the solutions proposed in these two settings. As such, it aims to offer the reader a first understanding of key concepts and techniques, and it serves as an “index” for researchers who are interested in exploring the concepts and techniques underlying proposed solutions to the querying of geo-textual data.Agency for Science, Technology and Research (A*STAR)Ministry of Education (MOE)Nanyang Technological UniversityThis research was supported in part by MOE Tier-2 Grant MOE2019-T2-2-181, MOE Tier-1 Grant RG114/19, an NTU ACE Grant, and the Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU) that is funded by the Singapore Government through the Industry Alignment Fund Industry Collaboration Projects Grant, and by the Innovation Fund Denmark centre, DIREC

    Clustering-Based Pre-Processing Approaches To Improve Similarity Join Techniques

    Get PDF
    Research on similarity join techniques is becoming one of the growing practical areas for study, especially with the increasing E-availability of vast amounts of digital data from more and more source systems. This research is focused on pre-processing clustering-based techniques to improve existing similarity join approaches. Identifying and extracting the same real-world entities from different data sources is still a big challenge and a significant task in the digital information era. Dissimilar extracts may indeed represent the same real-world entity because of inconsistent values and naming conventions, incorrect or missing data values, or incomplete information. Therefore discovering efficient and accurate approaches to determine the similarity of data objects or values is of theoretical as well as practical significance. Semantic problems are raised even on the concept of similarity regarding its usage and foundation. Existing similarity join approaches often have a very specific view of similarity measures and pre-defined predicates that represent a narrow focus on the context of similarity for a given scenario. The predicates have been assumed to be a group of clustering [MSW 72] related attributes on the join. To identify those entities for data integration purposes requires a broader view of similarity; for instance a number of generic similarity measures are useful in a given data integration systems. This study focused on string similarity join, namely based on the Levenshtein or edit distance and Q-gram. Proposed effective and efficient pre-processing clustering-based techniques were the focus of this study to identify clustering related predicates based on either attribute value or data value that improve existing similarity join techniques in enterprise data integration scenarios
    corecore