412 research outputs found

    Structure-aware image denoising, super-resolution, and enhancement methods

    Get PDF
    Denoising, super-resolution and structure enhancement are classical image processing applications. The motive behind their existence is to aid our visual analysis of raw digital images. Despite tremendous progress in these fields, certain difficult problems are still open to research. For example, denoising and super-resolution techniques which possess all the following properties, are very scarce: They must preserve critical structures like corners, should be robust to the type of noise distribution, avoid undesirable artefacts, and also be fast. The area of structure enhancement also has an unresolved issue: Very little efforts have been put into designing models that can tackle anisotropic deformations in the image acquisition process. In this thesis, we design novel methods in the form of partial differential equations, patch-based approaches and variational models to overcome the aforementioned obstacles. In most cases, our methods outperform the existing approaches in both quality and speed, despite being applicable to a broader range of practical situations.Entrauschen, Superresolution und Strukturverbesserung sind klassische Anwendungen der Bildverarbeitung. Ihre Existenz bedingt sich in dem Bestreben, die visuelle Begutachtung digitaler Bildrohdaten zu unterstützen. Trotz erheblicher Fortschritte in diesen Feldern bedürfen bestimmte schwierige Probleme noch weiterer Forschung. So sind beispielsweise Entrauschungsund Superresolutionsverfahren, welche alle der folgenden Eingenschaften besitzen, sehr selten: die Erhaltung wichtiger Strukturen wie Ecken, Robustheit bezüglich der Rauschverteilung, Vermeidung unerwünschter Artefakte und niedrige Laufzeit. Auch im Gebiet der Strukturverbesserung liegt ein ungelöstes Problem vor: Bisher wurde nur sehr wenig Forschungsaufwand in die Entwicklung von Modellen investieret, welche anisotrope Deformationen in bildgebenden Verfahren bewältigen können. In dieser Arbeit entwerfen wir neue Methoden in Form von partiellen Differentialgleichungen, patch-basierten Ansätzen und Variationsmodellen um die oben erwähnten Hindernisse zu überwinden. In den meisten Fällen übertreffen unsere Methoden nicht nur qualitativ die bisher verwendeten Ansätze, sondern lösen die gestellten Aufgaben auch schneller. Zudem decken wir mit unseren Modellen einen breiteren Bereich praktischer Fragestellungen ab

    Video Filtering Using Separable Four-Dimensional Nonlocal Spatiotemporal Transforms

    Get PDF
    The large number of practical application involving digital videos has motivated a significant interest in restoration or enhancement solutions to improve the visual quality under the presence of noise. We propose a powerful video denoising algorithm that exploits temporal and spatial redundancy characterizing natural video sequences to reduce the effects of noise. The algorithm implements the paradigm of nonlocal grouping and collaborative filtering, where a four-dimensional transform- domain representation is leveraged to enforce sparsity and thus regularize the data. Moreover we present an extension of our algorithm that can be effectively used as a deblocking and deringing filter to reduce the artifacts introduced by most of the popular video compression techniques. Our algorithm, termed V-BM4D, at first constructs three-dimensional volumes, by tracking blocks along trajectories defined by the motion vectors, and then groups together mutually similar volumes by stacking them along an additional fourth dimension. Each group is transformed through a decorrelating four-dimensional separable transform, and then it is collaboratively filtered by coeffcients shrinkage. The effectiveness of shrinkage is due to the sparse representation of the transformed group. Sparsity is achieved because of different type of correlation among the groups: local correlation along the two dimensions of the blocks, temporal correlation along the motion trajectories, and nonlocal spatial correlation along the fourth dimension. As a conclusive step, the different estimates of the filtered groups are adaptively aggregated and subsequently returned to their original position, to produce a final estimate of the original video. The proposed filtering procedure leads to excellent results in both objective and subjective visual quality, since in the restored video sequences the effect of the noise or of the compression artifacts is noticeably reduced, while the significant features are preserved. As demonstrated by experimental results, V-BM4D outperforms the state of the art in video denoising. /Kir1

    Adaptive filtering techniques for acquisition noise and coding artifacts of digital pictures

    Get PDF
    The quality of digital pictures is often degraded by various processes (e.g, acquisition or capturing, compression, filtering process, transmission, etc). In digital image/video processing systems, random noise appearing in images is mainly generated during the capturing process; while the artifacts (or distortions) are generated in compression or filtering processes. This dissertation looks at digital image/video quality degradations with possible solution for post processing techniques for coding artifacts and acquisition noise reduction for images/videos. Three major issues associated with the image/video degradation are addressed in this work. The first issue is the temporal fluctuation artifact in digitally compressed videos. In the state-of-art video coding standard, H.264/AVC, temporal fluctuations are noticeable between intra picture frames or between an intra picture frame and neighbouring inter picture frames. To resolve this problem, a novel robust statistical temporal filtering technique is proposed. It utilises a re-descending robust statistical model with outlier rejection feature to reduce the temporal fluctuations while preserving picture details and motion sharpness. PSNR and sum of square difference (SSD) show improvement of proposed filters over other benchmark filters. Even for videos contain high motion, the proposed temporal filter shows good performances in fluctuation reduction and motion clarity preservation compared with other baseline temporal filters. The second issue concerns both the spatial and temporal artifacts (e.g, blocking, ringing, and temporal fluctuation artifacts) appearing in compressed video. To address this issue, a novel joint spatial and temporal filtering framework is constructed for artifacts reduction. Both the spatial and the temporal filters employ a re-descending robust statistical model (RRSM) in the filtering processes. The robust statistical spatial filter (RSSF) reduces spatial blocking and ringing artifacts whilst the robust statistical temporal filter (RSTF) suppresses the temporal fluctuations. Performance evaluations demonstrate that the proposed joint spatio-temporal filter is superior to H.264 loop filter in terms of spatial and temporal artifacts reduction and motion clarity preservation. The third issue is random noise, commonly modeled as mixed Gaussian and impulse noise (MGIN), which appears in image/video acquisition process. An effective method to estimate MGIN is through a robust estimator, median absolute deviation normalized (MADN). The MADN estimator is used to separate the MGIN model into impulse and additive Gaussian noise portion. Based on this estimation, the proposed filtering process is composed of a modified median filter for impulse noise reduction, and a DCT transform based denoising filter for additive Gaussian noise reduction. However, this DCT based denoising filter produces temporal fluctuations for videos. To solve this problem, a temporal filter is added to the filtering process. Therefore, another joint spatio-temporal filtering scheme is built to achieve the best visual quality of denoised videos. Extensive experiments show that the proposed joint spatio-temporal filtering scheme outperforms other benchmark filters in noise and distortions suppression

    Lifting transforms on graphs and their application to video coding

    Get PDF
    Compact representations of data are very useful in many applications such as coding, denoising or feature extraction. “Classical” transforms such as Discrete Cosine Transforms (DCT) or Discrete Wavelets Transforms (DWT) provide sparse approximations of smooth signals, but lose efficiency when they are applied to signals with large discontinuities. In such cases, directional transforms, which are able to adapt their basis functions to the underlying signal structure, improve the performance of “classical” transforms. In this PhD Thesis we describe a general class of lifting transforms on graphs that can be seen as N-dimensional directional transforms. Graphs are constructed so that every node corresponds to a specific sample point of a discrete N-dimensional signal and links between nodes represent correlation between samples. Therefore, non-correlated samples (e.g., samples across a large discontinuity in the signal) should not be linked. We propose a lifting-based directional transform that can be applied to any undirected graph. In this transform, filtering operations are performed following highcorrelation directions (indicated by the links between nodes), thus avoiding filtering across large discontinuities that give rise to large high-pass coefficients in those locations. In this way, the transform efficiently exploits the correlation that exists between data on the graph, leading to a more compact representation. We mainly focus on the design and optimization of these lifting transforms on graphs, studying and discussing the three main steps required to obtain an invertible and critically sampled transform: (i) graph construction, (ii) design of “good” graph bipartitions, and (iii) filter design. We also explain how to extend the transform to J levels of decomposition, obtaining a multiresolution analysis of the original N-dimensional signal. The proposed transform has many desirable properties, such as perfect reconstruction, critically-sampled, easy generalization to N-dimensional domains, non-separable and one-dimensional filtering operations, localization in frequency and in the original domain, and the ability to choose any filtering direction. As an application, we develop a graph-based video encoder where the goal is to obtain a compact representation of the original video sequence. To this end, we first propose a graph-representation of the video sequence and then design a 3-dimensional (spatio-temporal) non-separable directional transform. This can be viewed as an extension of wavelet transform-based video encoders that operate in the spatial and in the temporal domains independently. Our transform yields better compaction ability (in terms of non-linear approximation) than a state of the art motion-compensated temporal filtering transform (which can be interpreted as a temporal wavelet transform) and a comparable hybrid Discrete Cosine Transform (DCT)-based video encoder (which is the basis of the latest video coding standards). In order to obtain a complete video encoder, the transform coefficients and the side information (needed to obtain an invertible scheme) should be entropy coded and sent to the decoder. Therefore, we also propose a coefficient-reordering method based on the information of the graph which allows to improve the compression ability of the entropy encoder. Furthermore, we design two different low-cost approaches which aim to reduce the extensive computational complexity of the proposed system without causing significant losses of compression performance. The proposed complete system leads to an efficient encoder which significantly outperforms a comparable hybrid DCT-based encoder in rate-distortion terms. Finally, we investigate how rate-distortion optimization can be applied to the proposed coding scheme.La representación compacta de señales resulta útil en diversas aplicaciones, tales como compresión, reducción de ruido, o extracción de características. Transformadas “clásicas” como la Transformada Discreta del Coseno (DCT) o la TransformadaWavelet Discreta (DWT) logran aproximaciones compactas de señales suaves, pero pierden su eficiencia al ser aplicadas sobre se˜nales que contienen grandes discontinuidades. En estos casos, las transformadas direccionales, capaces de adaptar sus funciones base a la estructura de la señal a analizar, mejoran la eficiencia de las transformadas “clásicas”. En esta tesis nos centramos en el diseño y optimización de transformadas “lifting” sobre grafos, las cuales pueden ser interpretadas como transformadas direccionales N-dimensionales. Los grafos son construidos demanera que cada nodo se corresponde con una muestra específica de una señal discreta N-dimensional, y los enlaces entre los nodos representan correlación entre muestras. Así, muestras no correlacionadas (por ejemplo, muestras que se encuentran a ambos lados de una discontinuidad) no deberían estar unidas. Sobre el grafo formado aplicaremos transformadas basadas en el esquema “lifting”, en las que las operaciones de filtrado se realizan siguiendo las direcciones indicadas por los enlaces entre nodos (direcciones de alta correlación). De esta manera, evitaremos filtrar cruzando a través de largas discontinuidades (lo que resultaría en coeficientes con alto valor en dichas discontinuidades), dando lugar a una transformada direccional que explota la correlación que existe entre las muestras de la señal en el grafo, obteniendo una representación compacta de dicha señal. En esta tesis nos centramos, principalmente, en investigar los tres principales pasos requeridos para obtener una transformada direccional basada en el esquema “lifting” aplicado en grafos: (i) la construcción del grafo, (ii) el diseño de biparticiones del grafo, y (iii) la definición de los filtros. El buen diseño de estos tres procesos determinará, entre otras cosas, la capacidad para compactar la energía de la transformada. También explicamos cómo extender este tipo de transformadas a J niveles de descomposición, obteniendo un análisis multi-resolución de la señal N-dimensional original. La transformada propuesta tiene muchas propiedades deseables, tales como reconstrucción perfecta, muestreo crítico, fácil generalización a dominios N-dimensionales, operaciones de filtrado no separables y unidimensionales, localización en frecuencia y en el dominio original, y capacidad de elegir cualquier dirección de filtrado. Como aplicación, desarrollamos un codificador de vídeo basado en grafos donde el objetivo es obtener una versión compacta de la señal de vídeo original. Para ello, primero proponemos una representación en grafos de la secuencia de vídeo y luego diseñamos transformadas no separables direccionales 3-dimensionales (espacio-tiempo). Nuestro codificador puede interpretarse como una extensión de los codificadores de vídeo basados en “wavelets”, los cuales operan independientemente (de forma separable) en el dominio espacial y en el temporal. La transformada propuesta consigue mejores resultados (en términos de aproximación no lineal) que un método del estado del arte basado en “wavelets” temporales compensadas en movimiento, y un codificador DCT comparable (base de los últimos estándares de codificación de vídeo). Para conseguir un codificador de vídeo completo, los coeficientes resultantes de la transformada y la información secundaria (necesaria para obtener un esquema invertible) deben ser codificados entrópicamente y enviados al decodificador. Por ello, también proponemos en esta tesis un método de reordenación de los coeficientes basado en la información del grafo que permite mejorar la capacidad de compresión del codificador entrópico. El esquema de codificación propuesto mejora significativamente la eficiencia de un codificador híbrido basado en DCT en términos de tasa-distorsión. Sin embargo, nuestro método tiene la desventaja de su gran complejidad computacional. Para tratar de paliar este problema, diseñamos dos algoritmos que tratan de reducir dicha complejidad sin que ello afecte en la capacidad de compresión. Finalmente, investigamos como realizar optimización tasa-distorsión sobre el codificador basado en grafos propuesto
    corecore