39 research outputs found

    Predicting Evacuation Decisions using Representations of Individuals' Pre-Disaster Web Search Behavior

    Full text link
    Predicting the evacuation decisions of individuals before the disaster strikes is crucial for planning first response strategies. In addition to the studies on post-disaster analysis of evacuation behavior, there are various works that attempt to predict the evacuation decisions beforehand. Most of these predictive methods, however, require real time location data for calibration, which are becoming much harder to obtain due to the rising privacy concerns. Meanwhile, web search queries of anonymous users have been collected by web companies. Although such data raise less privacy concerns, they have been under-utilized for various applications. In this study, we investigate whether web search data observed prior to the disaster can be used to predict the evacuation decisions. More specifically, we utilize a "session-based query encoder" that learns the representations of each user's web search behavior prior to evacuation. Our proposed approach is empirically tested using web search data collected from users affected by a major flood in Japan. Results are validated using location data collected from mobile phones of the same set of users as ground truth. We show that evacuation decisions can be accurately predicted (84%) using only the users' pre-disaster web search data as input. This study proposes an alternative method for evacuation prediction that does not require highly sensitive location data, which can assist local governments to prepare effective first response strategies.Comment: Accepted in ACM KDD 201

    Measuring the effect of park-and-ride facilities and interchange station on passenger ridership at the urban rail station in Kuala Lumpur

    Get PDF
    This paper is to measure the contribution of the park-and-ride facility and interchange station on passenger ridership in Kuala Lumpur using March 2018 passenger ridership, park-and-ride, and interchange station data for each station along Sri Petaling – Ampang lines. The data were gathered and analyzed using correlations and multiple regression. The result found that the interchange station has contributed 38.5% in determining passenger ridership for the Sri Petaling – Ampang lines. Park-and-ride facilities, however, were found to be statistically insignificant in determining passenger ridership. Therefore, the interchange station is crucial for future urban rail development, to increase ridership, improve mobility and uplift public transport modal split. Further studies should identify the irrelevancy of park-and-ride facilities in contributing to passenger ridership for rail lines. A better characteristic of park-and-ride facilities must be formulated to tackle their weaknesses and to improve existing park-and-ride and their future development

    Spatiotemporal enabled Content-based Image Retrieval

    Full text link

    Progress in Landslide Research and Technology, Volume 1 Issue 2, 2022

    Get PDF
    This open access book provides an overview of the progress in landslide research and technology and is part of a book series of the International Consortium on Landslides (ICL). It gives an overview of recent progress in landslide research and technology for practical applications and the benefit for the society contributing to understanding and reducing landslide disaster risk

    Proceedings of the 9th Annual International Conference of the International Institute for Infrastructure Renewal and Reconstruction

    Get PDF
    Proceedings of The 9th Annual International Conference of the International Institute for Infrastructure Renewal and Reconstruction. The conference was held at Queensland University of Technology (QUT), Brisbane, Australia from 8-10 July 2013. The event title for the 9th Annual Conference was: Risk-informed Disaster Management: Planning for Response, Recovery and Resilience. All papers were double blind peer reviewed and the Proceedings were published online in March 2015

    Health-Related Emergency Disaster Risk Management (Health-EDRM)

    Get PDF
    Disasters such as earthquakes, cyclones, floods, heat waves, nuclear accidents, and large scale pollution incidents take lives and cause exceptionally large health problems. The majority of large-scale disasters affect the most vulnerable populations, which are often comprised of people of extreme ages, in remote living areas, with endemic poverty, and with low literacy. Health-related emergency disaster risk management (Health-EDRM) [1] refers to the systematic analysis and management of health risks surrounding emergencies and disasters; it plays an important role in reducing hazards and vulnerability along with extending preparedness, response, and recovery measures. This concept encompasses risk analyses and interventions, such as accessible early warning systems, timely deployment of relief workers, and the provision of suitable drugs and medical equipment, to decrease the impact of disaster on people before, during, and after disaster events. Disaster risk profiling and interventions can be at the personal/household, community, and system/political levels; they can be targeted at specific health risks including respiratory issues caused by indoor burning, re-emergence of infectious disease due to low vaccination coverage, and gastrointestinal problems resulting from unregulated waste management. Unfortunately, there has been a major gap in the scientific literature regarding Health-EDRM. The aim of this Special Issue of IJERPH was to present papers describing/reporting the latest disaster and health risk analyses, as well as interventions for health-related disaster risk management, in an effort to address this gap and facilitate major global policies and initiatives for disaster risk reduction

    The Demography of Disasters

    Get PDF
    This open access book provides worldwide examples demonstrating the importance of the interplay between demography and disasters in regions and spatially. It marks an advance in practical and theoretical insights for understanding the role of demography in planning for and mitigating impacts from disasters in developed nations. Both slow onset (like the of loss polar ice from climate change) and sudden disasters (such as cyclones and man-made disasters) have the capacity to fundamentally change the profiles of populations at local and regional levels. Impacts vary according to the type, rapidity and magnitude of the disaster, but also according to the pre-existing population profile and its relationships to the economy and society. In all cases, the key to understanding impacts and avoiding them in the future is to understand the relationships between disasters and population change. In most chapters in this book we compare and contrast studies from at least two cases and summarize their practical and theoretical lessons

    A Deep Learning approach for monitoring severe rainfall in urban catchments using consumer cameras. Models development and deployment on a case study in Matera (Italy) Un approccio basato sul Deep Learning per monitorare le piogge intense nei bacini urbani utilizzando fotocamere generiche. Sviluppo e implementazione di modelli su un caso di studio a Matera (Italia)

    Get PDF
    In the last 50 years, flooding has figured as the most frequent and widespread natural disaster globally. Extreme precipitation events stemming from climate change could alter the hydro-geological regime resulting in increased flood risk. Near real-time precipitation monitoring at local scale is essential for flood risk mitigation in urban and suburban areas, due to their high vulnerability. Presently, most of the rainfall data is obtained from ground‐based measurements or remote sensing that provide limited information in terms of temporal or spatial resolution. Other problems may be due to the high costs. Furthermore, rain gauges are unevenly spread and usually placed away from urban centers. In this context, a big potential is represented by the use of innovative techniques to develop low-cost monitoring systems. Despite the diversity of purposes, methods and epistemological fields, the literature on the visual effects of the rain supports the idea of camera-based rain sensors but tends to be device-specific. The present thesis aims to investigate the use of easily available photographing devices as rain detectors-gauges to develop a dense network of low-cost rainfall sensors to support the traditional methods with an expeditious solution embeddable into smart devices. As opposed to existing works, the study focuses on maximizing the number of image sources (like smartphones, general-purpose surveillance cameras, dashboard cameras, webcams, digital cameras, etc.). This encompasses cases where it is not possible to adjust the camera parameters or obtain shots in timelines or videos. Using a Deep Learning approach, the rainfall characterization can be achieved through the analysis of the perceptual aspects that determine whether and how a photograph represents a rainy condition. The first scenario of interest for the supervised learning was a binary classification; the binary output (presence or absence of rain) allows the detection of the presence of precipitation: the cameras act as rain detectors. Similarly, the second scenario of interest was a multi-class classification; the multi-class output described a range of quasi-instantaneous rainfall intensity: the cameras act as rain estimators. Using Transfer Learning with Convolutional Neural Networks, the developed models were compiled, trained, validated, and tested. The preparation of the classifiers included the preparation of a suitable dataset encompassing unconstrained verisimilar settings: open data, several data owned by National Research Institute for Earth Science and Disaster Prevention - NIED (dashboard cameras in Japan coupled with high precision multi-parameter radar data), and experimental activities conducted in the NIED Large Scale Rainfall Simulator. The outcomes were applied to a real-world scenario, with the experimentation through a pre-existent surveillance camera using 5G connectivity provided by Telecom Italia S.p.A. in the city of Matera (Italy). Analysis unfolded on several levels providing an overview of generic issues relating to the urban flood risk paradigm and specific territorial questions inherent with the case study. These include the context aspects, the important role of rainfall from driving the millennial urban evolution to determining present criticality, and components of a Web prototype for flood risk communication at local scale. The results and the model deployment raise the possibility that low‐cost technologies and local capacities can help to retrieve rainfall information for flood early warning systems based on the identification of a significant meteorological state. The binary model reached accuracy and F1 score values of 85.28% and 0.86 for the test, and 83.35% and 0.82 for the deployment. The multi-class model reached test average accuracy and macro-averaged F1 score values of 77.71% and 0.73 for the 6-way classifier, and 78.05% and 0.81 for the 5-class. The best performances were obtained in heavy rainfall and no-rain conditions, whereas the mispredictions are related to less severe precipitation. The proposed method has limited operational requirements, can be easily and quickly implemented in real use cases, exploiting pre-existent devices with a parsimonious use of economic and computational resources. The classification can be performed on single photographs taken in disparate conditions by commonly used acquisition devices, i.e. by static or moving cameras without adjusted parameters. This approach is especially useful in urban areas where measurement methods such as rain gauges encounter installation difficulties or operational limitations or in contexts where there is no availability of remote sensing data. The system does not suit scenes that are also misleading for human visual perception. The approximations inherent in the output are acknowledged. Additional data may be gathered to address gaps that are apparent and improve the accuracy of the precipitation intensity prediction. Future research might explore the integration with further experiments and crowdsourced data, to promote communication, participation, and dialogue among stakeholders and to increase public awareness, emergency response, and civic engagement through the smart community idea.Negli ultimi 50 anni, le alluvioni si sono confermate come il disastro naturale più frequente e diffuso a livello globale. Tra gli impatti degli eventi meteorologici estremi, conseguenti ai cambiamenti climatici, rientrano le alterazioni del regime idrogeologico con conseguente incremento del rischio alluvionale. Il monitoraggio delle precipitazioni in tempo quasi reale su scala locale è essenziale per la mitigazione del rischio di alluvione in ambito urbano e periurbano, aree connotate da un'elevata vulnerabilità. Attualmente, la maggior parte dei dati sulle precipitazioni è ottenuta da misurazioni a terra o telerilevamento che forniscono informazioni limitate in termini di risoluzione temporale o spaziale. Ulteriori problemi possono derivare dagli elevati costi. Inoltre i pluviometri sono distribuiti in modo non uniforme e spesso posizionati piuttosto lontano dai centri urbani, comportando criticità e discontinuità nel monitoraggio. In questo contesto, un grande potenziale è rappresentato dall'utilizzo di tecniche innovative per sviluppare sistemi inediti di monitoraggio a basso costo. Nonostante la diversità di scopi, metodi e campi epistemologici, la letteratura sugli effetti visivi della pioggia supporta l'idea di sensori di pioggia basati su telecamera, ma tende ad essere specifica per dispositivo scelto. La presente tesi punta a indagare l'uso di dispositivi fotografici facilmente reperibili come rilevatori-misuratori di pioggia, per sviluppare una fitta rete di sensori a basso costo a supporto dei metodi tradizionali con una soluzione rapida incorporabile in dispositivi intelligenti. A differenza dei lavori esistenti, lo studio si concentra sulla massimizzazione del numero di fonti di immagini (smartphone, telecamere di sorveglianza generiche, telecamere da cruscotto, webcam, telecamere digitali, ecc.). Ciò comprende casi in cui non sia possibile regolare i parametri fotografici o ottenere scatti in timeline o video. Utilizzando un approccio di Deep Learning, la caratterizzazione delle precipitazioni può essere ottenuta attraverso l'analisi degli aspetti percettivi che determinano se e come una fotografia rappresenti una condizione di pioggia. Il primo scenario di interesse per l'apprendimento supervisionato è una classificazione binaria; l'output binario (presenza o assenza di pioggia) consente la rilevazione della presenza di precipitazione: gli apparecchi fotografici fungono da rivelatori di pioggia. Analogamente, il secondo scenario di interesse è una classificazione multi-classe; l'output multi-classe descrive un intervallo di intensità delle precipitazioni quasi istantanee: le fotocamere fungono da misuratori di pioggia. Utilizzando tecniche di Transfer Learning con reti neurali convoluzionali, i modelli sviluppati sono stati compilati, addestrati, convalidati e testati. La preparazione dei classificatori ha incluso la preparazione di un set di dati adeguato con impostazioni verosimili e non vincolate: dati aperti, diversi dati di proprietà del National Research Institute for Earth Science and Disaster Prevention - NIED (telecamere dashboard in Giappone accoppiate con dati radar multiparametrici ad alta precisione) e attività sperimentali condotte nel simulatore di pioggia su larga scala del NIED. I risultati sono stati applicati a uno scenario reale, con la sperimentazione attraverso una telecamera di sorveglianza preesistente che utilizza la connettività 5G fornita da Telecom Italia S.p.A. nella città di Matera (Italia). L'analisi si è svolta su più livelli, fornendo una panoramica sulle questioni relative al paradigma del rischio di alluvione in ambito urbano e questioni territoriali specifiche inerenti al caso di studio. Queste ultime includono diversi aspetti del contesto, l'importante ruolo delle piogge dal guidare l'evoluzione millenaria della morfologia urbana alla determinazione delle criticità attuali, oltre ad alcune componenti di un prototipo Web per la comunicazione del rischio alluvionale su scala locale. I risultati ottenuti e l'implementazione del modello corroborano la possibilità che le tecnologie a basso costo e le capacità locali possano aiutare a caratterizzare la forzante pluviometrica a supporto dei sistemi di allerta precoce basati sull'identificazione di uno stato meteorologico significativo. Il modello binario ha raggiunto un'accuratezza e un F1-score di 85,28% e 0,86 per il set di test e di 83,35% e 0,82 per l'implementazione nel caso di studio. Il modello multi-classe ha raggiunto un'accuratezza media e F1-score medio (macro-average) di 77,71% e 0,73 per il classificatore a 6 vie e 78,05% e 0,81 per quello a 5 classi. Le prestazioni migliori sono state ottenute nelle classi relative a forti precipitazioni e assenza di pioggia, mentre le previsioni errate sono legate a precipitazioni meno estreme. Il metodo proposto richiede requisiti operativi limitati, può essere implementato facilmente e rapidamente in casi d'uso reali, sfruttando dispositivi preesistenti con un uso parsimonioso di risorse economiche e computazionali. La classificazione può essere eseguita su singole fotografie scattate in condizioni disparate da dispositivi di acquisizione di uso comune, ovvero da telecamere statiche o in movimento senza regolazione dei parametri. Questo approccio potrebbe essere particolarmente utile nelle aree urbane in cui i metodi di misurazione come i pluviometri incontrano difficoltà di installazione o limitazioni operative o in contesti in cui non sono disponibili dati di telerilevamento o radar. Il sistema non si adatta a scene che sono fuorvianti anche per la percezione visiva umana. I limiti attuali risiedono nelle approssimazioni intrinseche negli output. Per colmare le lacune evidenti e migliorare l'accuratezza della previsione dell'intensità di precipitazione, sarebbe possibile un'ulteriore raccolta di dati. Sviluppi futuri potrebbero riguardare l'integrazione con ulteriori esperimenti in campo e dati da crowdsourcing, per promuovere comunicazione, partecipazione e dialogo aumentando la resilienza attraverso consapevolezza pubblica e impegno civico in una concezione di comunità smart
    corecore