163 research outputs found

    A novel wideband dynamic directional indoor channel model based on a Markov process

    Get PDF
    This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available

    A new statistical wideband spatio-temporal channel model for 5-GHz band WLAN systems

    Get PDF

    Characterization, modeling and simulation of the MIMO propagation channel

    Get PDF
    International audienceThis article deals with several aspects relative to the MIMO propagation channel. Based on simulations and/or measurements, different approaches are used to model the propagation channel. These models are useful for the MIMO system design. Several studies are performed in order to realize realistic simulation of MIMO channel. Different measurement techniques are used in characterizing the propagation channel in various environments. Measurement campaigns made in different situations have been analyzed to obtain the relevant statistical parameters of the channel. Simulation of MIMO channel is then presented. Measurement and simulation results provide an evaluation of the capacity of MIMO channel. Obtained results show feasibility in the integration of MIMO techniques in practical wireless communication systems.Cet article traite de plusieurs aspects relatifs au canal de propagation MIMO. Différentes approches, basées sur des simulations et des mesures, utilisées pour modéliser le canal sont d’abord présentées. Ensuite, les différentes techniques de mesure utilisées dans le but de caractériser le canal de propagation dans divers milieux sont décrites. Des campagnes de mesures effectuées dans différents environnements sont analysées pour obtenir les paramètres statistiques du canal. Quelques problématiques liées à la simulation du canal MIMO sont évoquées notamment en lien avec une simulation réaliste dans des milieux complexes. Les résultats obtenus, en simulation comme en mesure, permettent une évaluation de la capacité du canal MIMO. Ces résultats permettent de discuter de l’intégration des techniques MIMO dans des systèmes de communication sans fil

    On geometry-base statistical channel models for MIMO wireles communications

    Get PDF
    El uso de sistemas de comunicación de banda ancha de múltiple entradamúltiple salida (Multiple Input Multiple Output MIMO) es actualmente objeto de un interés considerable. Una razón para esto es el reciente desarrollo de sistemas de comunicación móvil de tercera generación (3G) y superiores, tales como la tecnología de banda ancha Wideband Code Division Multiple Access (WCDMA, por sus siglas en inglés), la cual proporciona canales de radio de 5 MHz de ancho de banda. Para el diseño y la simulación de estos sistemas de radio móviles que usan propagación inalámbrica MIMO (como Wideband-CDMA por ejemplo), necesitamos modelos de canal que provean la requerida información espacial y temporal necesaria para el estudio de tales sistemas, esto es, los parámetros básicos de modelado en los dominios del espacio y el tiempo. Como ejemplo podemos mencionar, el valor cuadrático medio de la dispersión del retardo (Delay spread DS) el cual está directamente relacionado a la capacidad de un sistema de comunicación específico y nos da una idea aproximada de la complejidad del receptor. En esta tesis, se propone un modelo basado en geometría con enfoque en grupos (clusters) y es utilizado para el análisis en los dominios del espacio y el tiempo para condiciones estacionarias, y para representar los perfiles de potencia-angulo-retardo (Power Delay Angle Profiles PDAPs) de los componentes multi-trayectoria en ambientes urbanos. Además, se han derivado soluciones en formas cerradas para las expresiones en el dominio del ángulo (espacial) y del tiempo. La investigación previa sobre el modelado de canales cubre una amplia variedad de aspectos en varios niveles de detalle, incluyendo análisis para condiciones no estacionarias. Sin embargo el trabajo presentado en la literatura no incluye las relaciones entre los grupos (cluster) físicos y los PDAPs. El modelo propuesto basado en grupos (clusters) puede ser usado para mejorar aún más el desempeño en condiciones estacionarias de los sistemas de comunicaciones móviles actuales y futuros tales como los sistemas de comunicación MIMO de banda ancha. En la tesis también se presenta un análisis en el dominio del ángulo (espacial) y del tiempo respectivamente, a través de las funciones densidad de probabilidad (PDF) de la dirección de llegada (Direction of Arrival DOA) y el tiempo de llegada (Time of Arrival TOA) para el modelo basado en grupos. A fin de evaluar las funciones de probabilidad teóricas derivadas, éstas han sido comparadas con resultados experimentales publicados en la literatura. La comparación con estos resultados experimentales muestran una buena concordancia, no obstante la técnica de modelado presentada en esta tesis se encuentra limitada a condiciones estacionarias del canal. La condición de no estacionariedad se ubica más allá del alcance de esta tesis, es decir, el modelo propuesto no incorpora el efecto Doppler en los análisis

    Characterisation of MIMO radio propagation channels

    Get PDF
    Due to the incessant requirement for higher performance radio systems, wireless designers have been constantly seeking ways to improve spectrum efficiency, link reliability, service quality, and radio network coverage. During the past few years, space-time technology which employs multiple antennas along with suitable signalling schemes and receiver architectures has been seen as a powerful tool for the implementation of the aforementioned requirements. In particular, the concept of communications via Multiple-Input Multiple-Output (MIMO) links has emerged as one of the major contending ideas for next generation ad-hoc and cellular systems. This is inherently due to the capacities expected when multiple antennas are employed at both ends of the radio link. Such a mobile radio propagation channel constitutes a MIMO system. Multiple antenna technologies and in particular MIMO signalling are envisaged for a number of standards such as the next generation of Wireless Local Area Network (WLAN) technology known as 802.1 ln and the development of the Worldwide Interoperability for Microwave Access (WiMAX) project, such as the 802.16e. For the efficient design, performance evaluation and deployment of such multiple antenna (space-time) systems, it becomes increasingly important to understand the characteristics of the spatial radio channel. This criterion has led to the development of new sounding systems, which can measure both spatial and temporal channel information. In this thesis, a novel semi-sequential wideband MIMO sounder is presented, which is suitable for high-resolution radio channel measurements. The sounder produces a frequency modulated continuous wave (FMCW) or chirp signal with variable bandwidth, centre frequency and waveform repetition rate. It has programmable bandwidth up to 300 MHz and waveform repetition rates up to 300 Hz, and could be used to measure conventional high- resolution delay/Doppler information as well as spatial channel information such as Direction of Arrival (DOA) and Direction of Departure (DOD). Notably the knowledge of the angular information at the link ends could be used to properly design and develop systems such as smart antennas. This thesis examines the theory of multiple antenna propagation channels, the sounding architecture required for the measurement of such spatial channel information and the signal processing which is used to quantify and analyse such measurement data. Over 700 measurement files were collected corresponding to over 175,000 impulse responses with different sounder and antenna array configurations. These included measurements in the Universal Mobile Telecommunication Systems Frequency Division Duplex (UMTS-FDD) uplink band, the 2.25 GHz and 5.8 GHz bands allocated for studio broadcast MIMO video links, and the 2.4 GHz and 5.8 GHz ISM bands allocated for Wireless Local Area Network (WLAN) activity as well as for a wide range of future systems defined in the WiMAX project. The measurements were collected predominantly for indoor and some outdoor multiple antenna channels using sounding signals with 60 MHz, 96 MHz and 240 MHz bandwidth. A wide range of different MIMO antenna array configurations are examined in this thesis with varying space, time and frequency resolutions. Measurements can be generally subdivided into three main categories, namely measurements at different locations in the environment (static), measurements while moving at regular intervals step by step (spatial), and measurements while the receiver (or transmitter) is on the move (dynamic). High-scattering as well as time-varying MIMO channels are examined for different antenna array structures

    Modeling of wide-band MIMO radio channels based on NLoS indoor measurements

    Get PDF
    Link to published version (if available)

    Der 60 GHz Indoor-Funkkanal - Herausforderungen menschlicher Abschattung

    Get PDF
    Driven by the ever increasing capacity of storage devices and HD video streaming applications, there will be a strong demand for wireless multi-Gbps consumer applications soon. Due to its large available bandwidth and the high allowed transmit power, the unlicensed frequency range around 60 GHz is proving ideal for the realization of such systems. During the development process of 60 GHz multi-gigabit wireless systems, a detailed knowledge of the radio channel is essential. Taking into account research gaps, this dissertation makes a significant contribution to knowledge in the field of 60 GHz channel characterization. The focus is on human shadowing and its influence on the channel characteristics, which leads to a high and time-variant path loss. In order to provide realistic results, sophisticated radio channel models are required for the 60 GHz range. In particular, they should include information in the spatial domain at the receiver and the transmitter as well as take into account time-varying human shadowing. The angular information is necessary in this case to evaluate smart antenna systems. Such comprehensive models are not yet available and therefore represent the major outcome of this dissertation.Wegen seiner großen verfügbaren Bandbreite und der hohen erlaubten Sendeleistung erweist sich der unlizensierte Frequenzbereich um 60 GHz als hervorragend geeignet für die Realisierung drahtloser Multi-Gigabit-Kommunikationssysteme. Während des Entwicklungsprozesses solcher Systeme ist eine detaillierte Kenntnis des Funkkanals unerlässlich. Unter Berücksichtigung offener Fragestellungen leistet die vorliegende Dissertation einen wesentlichen Beitrag zum Wissensstand auf dem Gebiet der 60-GHz-Kanalcharakterisierung. Im Vordergrund steht dabei die Abschattung durch Personen, die bei Trägerfrequenzen um 60 GHz zu einer hohen und gleichzeitig zeitvarianten Funkfelddämpfung führt. Um realistische Ergebnisse zu liefern, sind im 60-GHz-Bereich komplexe Funkkanalmodelle erforderlich, die insbesondere Winkelinformationen am Sender und Empfänger enthalten und die zeitvariante Abschattung durch Personen berücksichtigen sollten. Beides ist notwendig, um intelligente Antennensysteme evaluieren zu können. Solche umfassenden Modelle sind bisher nicht verfügbar und stellen deshalb das wesentliche Ziel dieser Dissertation dar

    Der 60 GHz Indoor-Funkkanal - Herausforderungen menschlicher Abschattung

    Get PDF
    Driven by the ever increasing capacity of storage devices and HD video streaming applications, there will be a strong demand for wireless multi-Gbps consumer applications soon. Due to its large available bandwidth and the high allowed transmit power, the unlicensed frequency range around 60 GHz is proving ideal for the realization of such systems. During the development process of 60 GHz multi-gigabit wireless systems, a detailed knowledge of the radio channel is essential. Taking into account research gaps, this dissertation makes a significant contribution to knowledge in the field of 60 GHz channel characterization. The focus is on human shadowing and its influence on the channel characteristics, which leads to a high and time-variant path loss. In order to provide realistic results, sophisticated radio channel models are required for the 60 GHz range. In particular, they should include information in the spatial domain at the receiver and the transmitter as well as take into account time-varying human shadowing. The angular information is necessary in this case to evaluate smart antenna systems. Such comprehensive models are not yet available and therefore represent the major outcome of this dissertation.Wegen seiner großen verfügbaren Bandbreite und der hohen erlaubten Sendeleistung erweist sich der unlizensierte Frequenzbereich um 60 GHz als hervorragend geeignet für die Realisierung drahtloser Multi-Gigabit-Kommunikationssysteme. Während des Entwicklungsprozesses solcher Systeme ist eine detaillierte Kenntnis des Funkkanals unerlässlich. Unter Berücksichtigung offener Fragestellungen leistet die vorliegende Dissertation einen wesentlichen Beitrag zum Wissensstand auf dem Gebiet der 60-GHz-Kanalcharakterisierung. Im Vordergrund steht dabei die Abschattung durch Personen, die bei Trägerfrequenzen um 60 GHz zu einer hohen und gleichzeitig zeitvarianten Funkfelddämpfung führt. Um realistische Ergebnisse zu liefern, sind im 60-GHz-Bereich komplexe Funkkanalmodelle erforderlich, die insbesondere Winkelinformationen am Sender und Empfänger enthalten und die zeitvariante Abschattung durch Personen berücksichtigen sollten. Beides ist notwendig, um intelligente Antennensysteme evaluieren zu können. Solche umfassenden Modelle sind bisher nicht verfügbar und stellen deshalb das wesentliche Ziel dieser Dissertation dar

    Experimental Investigation Of Ultrawideband Wireless Systems: Waveform Generation, Propagation Estimation, And Dispersion Compensation

    Get PDF
    Ultrawideband (UWB) is an emerging technology for the future high-speed wireless communication systems. Although this technology offers several unique advantages like robustness to fading, large channel capacity and strong anti-jamming ability, there are a number of practical challenges which are topics of current research. One key challenge is the increased multipath dispersion which results because of the fine temporal resolution. The received response consists of different components, which have certain delays and attenuations due to the paths they took in their propagation from the transmitter to the receiver. Although such challenges have been investigated to some extent, they have not been fully explored in connection with sophisticated transmit beamforming techniques in realistic multipath environments. The work presented here spans three main aspects of UWB systems including waveform generation, propagation estimation, and dispersion compensation. We assess the accuracy of the measured impulse responses extracted from the spread spectrum channel sounding over a frequency band spanning 2-12 GHz. Based on the measured responses, different transmit beamforming techniques are investigated to achieve high-speed data transmission in rich multipath channels. We extend our work to multiple antenna systems and implement the first experimental test-bed to investigate practical challenges such as imperfect channel estimation or coherency between the multiple transmitters over the full UWB band. Finally, we introduce a new microwave photonic arbitrary waveform generation technique to demonstrate the first optical-wireless transmitter system for both characterizing channel dispersion and generating predistorted waveforms to achieve spatio-temporal focusing through the multipath channels

    Methods and criteria for performance analysis of multiantenna systems in mobile communications

    Get PDF
    Multiple-input multiple-output (MIMO) technique is one of the most promising solutions for increasing reliability and spectral efficiency of the radio connection in future mobile communication systems. The performance potential of MIMO systems is well established from theoretical point of view. However, much effort is still needed in the experimental verification of those systems using realistic antennas and channels. It is widely accepted that the antenna properties are of significant importance regarding the performance of single-input single-output (SISO) systems. However, the effect of the antennas on MIMO systems has not been thoroughly studied. Due to the complexity of MIMO systems, evaluation of MIMO antennas becomes increasingly cumbersome and time-consuming process in comparison to simpler systems. In the first part of this work an advanced antenna evaluation technique called experimental plane-wave based method (EPWBM) is generalized and validated to cover MIMO systems. This work is the extension of the previous work where the method has been used in the analysis of SISO systems. The EPWBM is based on the measured or simulated complex 3-D radiation patterns of the antennas and measured directional radio channel data. The EPWBM simplifies antenna evaluation process in comparison to traditional means since the same channel library can be utilized in the evaluation of several antenna systems without performing the same measurements for each prototype antennas separately. It is verified that the EPWBM is sufficiently reliable in comparing the performance of prototype antennas. In the second part of the work new quality factors for MIMO system evaluation enclosing traditional systems as special cases have been developed. The MIMO channel correlation matrix is formulated so that it reveals the ability of MIMO antenna systems to transfer signal power from a transmitter to a receiver and to utilize parallel spatial channels. It is also verified that correct normalization of the channel matrices is of significant importance in the MIMO antenna evaluation. This approach gives comprehensive framework for MIMO antenna evaluation, which takes into account both realistic antenna and channel properties. In the last part of the work insight into the performance of different antennas in different signal propagation environments is given. The performance of the antennas depends on the signal-to-noise-ratio and on the outage probability level considered. Although MIMO systems are based on the utilization of parallel spatial channels, the capability of the system to transfer signal power plays a significant role especially with small MIMO systems. In the realistic dynamic channels the capacity variation is larger than in the ideal channels, which are based on the identically and independently distributed (iid) channel assumption. Large performance variations occur in the realistic channels with directive antennas, when antennas are rotated in the usage environment, whereas omnidirectional ones are more robust but are difficult to realize in practice. The largest differences between the antennas are found at the low outage probability levels due to different radiation properties of the antennas. The systems with the cross-polarized antennas have smaller eigenvalue dispersion and are more robust in performance for the variations of the channel than the systems with co-polarized antennas. On the other hand, the co-polarized antennas possess better capability to transfer signal power and are more robust in performance for the antenna array orientation. From practical point of view, the dual-polarized antennas seem to be the most feasible candidates to be used in MIMO antenna systems due to compact structure, and indoor seems to be the most suitable for MIMO applications due to typically scatter-rich channel.Multiple-input multiple-output (MIMO) tekniika on yksi lupaavimmista ratkaisuista lisätä radioyhteyden luotettavuutta ja spektritehokkuutta tulevaisuuden matkaviestinjärjestelmissä. MIMO järjestelmien suorituskykypotentiaali on teoreettisesti todistettu. Paljon työtä tarvitaan kuitenkin vielä kokeelliseen järjestelmätestaukseen käyttäen realistisia antenneja ja kanavia. On laajasti hyväksyttyä että antennien ominaisuudet ovat merkityksellisiä single-input single-output (SISO) järjestelmien suorituskyvyn kannalta. Antennien vaikutusta MIMO-järjestelmiin ei ole kuitenkaan perusteellisesti tutkittu. MIMO-järjestelmien lisääntyneestä monimutkaisuudesta johtuen, verrattuna yksinkertaisempiin järjestelmiin, MIMO antennien suorituskyvyn arviointi hankaloituu ja vie enemmän aikaa. Työn ensimmäisessä osassa uusi antennien arviointitekniikka nimeltään kokeellinen tasoaaltoihin perustuva menetelmä (EPWBM) on yleistetty käsittämään MIMO järjestelmät ja sen tarkkuus on arvioitu. Tämä työ on laajennus aikaisempaan työhön jossa menetelmää on käytetty SISO-järjestelmien arviointiin. EPWBM perustuu mitattuihin tai simuloituihin antennien kompleksisiin 3-D suuntakuvioihin ja mitattuun suuntatiedon sisältämään kanavadataan. EPWBM yksinkertaistaa antennin suorituskyvyn arviointia perinteisiin menetelmiin verrattuna, koska sama kanavamittausaineisto voidaan hyödyntää usamman antennisysteemin arvioinnissa tekemättä samoja mittauksia jokaiselle antenniprototyypille erikseen. On osoitettu että EPWBM on suhteellisen luotettava prototyyppiantennien suorituskyvyn vertailussa. Työn toisessa osassa on kehitetty uusia hyvyyslukuja MIMO-järjestelmien suorituskyvyn arviointiin sisältäen perinteiset järjestelmät erikoistapauksina. MIMO-kanavamatriisi esitetään siten että se paljastaa MIMO-antennijärjestelmien kyvyn siirtää signaalitehoa lähettimen ja vastaanottimen välillä ja hyödyntää rinnakkaisia kanavia. On myös todistettu että oikeanlainen kanavamatriisien normalisointi on erittäin merkittävää MIMO-antennivertailussa. Tämä lähestymistapa antaa kattavat puitteet MIMO-antennien suorituskyvyn arviointiin ottaen huomioon todelliset antennien ja kanavan ominaisuudet. Työn viimeisessä osassa annetaan käsitys erilaisten antennien suorituskyvystä erilaisissa signaalin etenemisympäristöissä. Antennien suorituskyky riippuu signaalikohinasuhteesta ja tarkasteltavan signaalin luotettavuustasosta. Vaikka MIMO-järjestelmät perustuvat rinnakkaisten kanavien hyödyntämiseen järjestelmän signaalitehon siirto-ominaisuudet ovat merkittäviä erityisesti pienillä MIMO järjestelmillä. Realistisissa dynaamisissa kanavissa kapasiteetinvaihtelu on suurempaa kuin ideaalisissa kanavissa jotka perustuvat oletukseen että signaalit ovat riippumattomasti ja identtisesti jakautuneita (iid). Suurta suorituskykyn vaihtelua esiintyy realistissa kanavissa suuntaavilla antenneilla, kun antenneja pyöritetään käyttöympäristössä, kun taas ympärisäteilevät antennit olisivat jäykempiä suorituskyvyn kannalta mutta käytännössä vaikeampia toteuttaa. Suuremmat erot antennien välillä on löydettävissä matalalta signaalin luotettavuustasolta johtuen antennien erilaisista säteilyominaisuuksista. Kaksipolarisaatioantennijärjestelmillä on pienempi ominaisarvohaje ja niiden suorituskyky on jäykempi kanavan vaihteluille kuin yksipolarisaatioantennijärjestelmä. Toisaalta yksipolarisaatioantenneilla on paremmat signaalitehon siirto-ominaisuudet ja suorituskyky vaihtelee vähemmän antennin katselusuunnan funktiona. Käytännön näkökulmasta katsoen kaksipolarisaatioantennit näyttävät olevan kaikkein toteuttamiskelpoisin vaihtoehto käytettäväksi MIMO-systeemeissä johtuen niiden kompaktista rakenteesta, ja sisätila näyttää olevan sopivin ympäristö MIMO-sovelluksiin johtuen tyypillisesti sirontarikkaasta kanavasta.reviewe
    corecore