181 research outputs found

    TubeR: Tubelet Transformer for Video Action Detection

    Full text link
    We propose TubeR: a simple solution for spatio-temporal video action detection. Different from existing methods that depend on either an off-line actor detector or hand-designed actor-positional hypotheses like proposals or anchors, we propose to directly detect an action tubelet in a video by simultaneously performing action localization and recognition from a single representation. TubeR learns a set of tubelet-queries and utilizes a tubelet-attention module to model the dynamic spatio-temporal nature of a video clip, which effectively reinforces the model capacity compared to using actor-positional hypotheses in the spatio-temporal space. For videos containing transitional states or scene changes, we propose a context aware classification head to utilize short-term and long-term context to strengthen action classification, and an action switch regression head for detecting the precise temporal action extent. TubeR directly produces action tubelets with variable lengths and even maintains good results for long video clips. TubeR outperforms the previous state-of-the-art on commonly used action detection datasets AVA, UCF101-24 and JHMDB51-21

    3D PersonVLAD: Learning Deep Global Representations for Video-based Person Re-identification

    Full text link
    In this paper, we introduce a global video representation to video-based person re-identification (re-ID) that aggregates local 3D features across the entire video extent. Most of the existing methods rely on 2D convolutional networks (ConvNets) to extract frame-wise deep features which are pooled temporally to generate the video-level representations. However, 2D ConvNets lose temporal input information immediately after the convolution, and a separate temporal pooling is limited in capturing human motion in shorter sequences. To this end, we present a \textit{global} video representation (3D PersonVLAD), complementary to 3D ConvNets as a novel layer to capture the appearance and motion dynamics in full-length videos. However, encoding each video frame in its entirety and computing an aggregate global representation across all frames is tremendously challenging due to occlusions and misalignments. To resolve this, our proposed network is further augmented with 3D part alignment module to learn local features through soft-attention module. These attended features are statistically aggregated to yield identity-discriminative representations. Our global 3D features are demonstrated to achieve state-of-the-art results on three benchmark datasets: MARS \cite{MARS}, iLIDS-VID \cite{VideoRanking}, and PRID 2011Comment: Accepted to appear at IEEE Transactions on Neural Networks and Learning System

    Analyzing Human-Human Interactions: A Survey

    Full text link
    Many videos depict people, and it is their interactions that inform us of their activities, relation to one another and the cultural and social setting. With advances in human action recognition, researchers have begun to address the automated recognition of these human-human interactions from video. The main challenges stem from dealing with the considerable variation in recording setting, the appearance of the people depicted and the coordinated performance of their interaction. This survey provides a summary of these challenges and datasets to address these, followed by an in-depth discussion of relevant vision-based recognition and detection methods. We focus on recent, promising work based on deep learning and convolutional neural networks (CNNs). Finally, we outline directions to overcome the limitations of the current state-of-the-art to analyze and, eventually, understand social human actions

    Exploiting temporal information for DCNN-based fine-grained object classification

    Get PDF
    Fine-grained classification is a relatively new field that has concentrated on using information from a single image, while ignoring the enormous potential of using video data to improve classification. In this work we present the novel task of video-based fine-grained object classification, propose a corresponding new video dataset, and perform a systematic study of several recent deep convolutional neural network (DCNN) based approaches, which we specifically adapt to the task. We evaluate three-dimensional DCNNs, two-stream DCNNs, and bilinear DCNNs. Two forms of the two-stream approach are used, where spatial and temporal data from two independent DCNNs are fused either via early fusion (combination of the fully-connected layers) and late fusion (concatenation of the softmax outputs of the DCNNs). For bilinear DCNNs, information from the convolutional layers of the spatial and temporal DCNNs is combined via local co-occurrences. We then fuse the bilinear DCNN and early fusion of the two-stream approach to combine the spatial and temporal information at the local and global level (Spatio-Temporal Co-occurrence). Using the new and challenging video dataset of birds, classification performance is improved from 23.1% (using single images) to 41.1% when using the Spatio-Temporal Co-occurrence system. Incorporating automatically detected bounding box location further improves the classification accuracy to 53.6%
    • …
    corecore