65 research outputs found

    Automatic Spatiotemporal Analysis of Cardiac Image Series

    Get PDF
    RÉSUMÉ À ce jour, les maladies cardiovasculaires demeurent au premier rang des principales causes de décès en Amérique du Nord. Chez l’adulte et au sein de populations de plus en plus jeunes, la soi-disant épidémie d’obésité entraînée par certaines habitudes de vie tels que la mauvaise alimentation, le manque d’exercice et le tabagisme est lourde de conséquences pour les personnes affectées, mais aussi sur le système de santé. La principale cause de morbidité et de mortalité chez ces patients est l’athérosclérose, une accumulation de plaque à l’intérieur des vaisseaux sanguins à hautes pressions telles que les artères coronaires. Les lésions athérosclérotiques peuvent entraîner l’ischémie en bloquant la circulation sanguine et/ou en provoquant une thrombose. Cela mène souvent à de graves conséquences telles qu’un infarctus. Outre les problèmes liés à la sténose, les parois artérielles des régions criblées de plaque augmentent la rigidité des parois vasculaires, ce qui peut aggraver la condition du patient. Dans la population pédiatrique, la pathologie cardiovasculaire acquise la plus fréquente est la maladie de Kawasaki. Il s’agit d’une vasculite aigüe pouvant affecter l’intégrité structurale des parois des artères coronaires et mener à la formation d’anévrismes. Dans certains cas, ceux-ci entravent l’hémodynamie artérielle en engendrant une perfusion myocardique insuffisante et en activant la formation de thromboses. Le diagnostic de ces deux maladies coronariennes sont traditionnellement effectués à l’aide d’angiographies par fluoroscopie. Pendant ces examens paracliniques, plusieurs centaines de projections radiographiques sont acquises en séries suite à l’infusion artérielle d’un agent de contraste. Ces images révèlent la lumière des vaisseaux sanguins et la présence de lésions potentiellement pathologiques, s’il y a lieu. Parce que les séries acquises contiennent de l’information très dynamique en termes de mouvement du patient volontaire et involontaire (ex. battements cardiaques, respiration et déplacement d’organes), le clinicien base généralement son interprétation sur une seule image angiographique où des mesures géométriques sont effectuées manuellement ou semi-automatiquement par un technicien en radiologie. Bien que l’angiographie par fluoroscopie soit fréquemment utilisé partout dans le monde et souvent considéré comme l’outil de diagnostic “gold-standard” pour de nombreuses maladies vasculaires, la nature bidimensionnelle de cette modalité d’imagerie est malheureusement très limitante en termes de spécification géométrique des différentes régions pathologiques. En effet, la structure tridimensionnelle des sténoses et des anévrismes ne peut pas être pleinement appréciée en 2D car les caractéristiques observées varient selon la configuration angulaire de l’imageur. De plus, la présence de lésions affectant les artères coronaires peut ne pas refléter la véritable santé du myocarde, car des mécanismes compensatoires naturels (ex. vaisseaux----------ABSTRACT Cardiovascular disease continues to be the leading cause of death in North America. In adult and, alarmingly, ever younger populations, the so-called obesity epidemic largely driven by lifestyle factors that include poor diet, lack of exercise and smoking, incurs enormous stresses on the healthcare system. The primary cause of serious morbidity and mortality for these patients is atherosclerosis, the build up of plaque inside high pressure vessels like the coronary arteries. These lesions can lead to ischemic disease and may progress to precarious blood flow blockage or thrombosis, often with infarction or other severe consequences. Besides the stenosis-related outcomes, the arterial walls of plaque-ridden regions manifest increased stiffness, which may exacerbate negative patient prognosis. In pediatric populations, the most prevalent acquired cardiovascular pathology is Kawasaki disease. This acute vasculitis may affect the structural integrity of coronary artery walls and progress to aneurysmal lesions. These can hinder the blood flow’s hemodynamics, leading to inadequate downstream perfusion, and may activate thrombus formation which may lead to precarious prognosis. Diagnosing these two prominent coronary artery diseases is traditionally performed using fluoroscopic angiography. Several hundred serial x-ray projections are acquired during selective arterial infusion of a radiodense contrast agent, which reveals the vessels’ luminal area and possible pathological lesions. The acquired series contain highly dynamic information on voluntary and involuntary patient movement: respiration, organ displacement and heartbeat, for example. Current clinical analysis is largely limited to a single angiographic image where geometrical measures will be performed manually or semi-automatically by a radiological technician. Although widely used around the world and generally considered the gold-standard diagnosis tool for many vascular diseases, the two-dimensional nature of this imaging modality is limiting in terms of specifying the geometry of various pathological regions. Indeed, the 3D structures of stenotic or aneurysmal lesions may not be fully appreciated in 2D because their observable features are dependent on the angular configuration of the imaging gantry. Furthermore, the presence of lesions in the coronary arteries may not reflect the true health of the myocardium, as natural compensatory mechanisms may obviate the need for further intervention. In light of this, cardiac magnetic resonance perfusion imaging is increasingly gaining attention and clinical implementation, as it offers a direct assessment of myocardial tissue viability following infarction or suspected coronary artery disease. This type of modality is plagued, however, by motion similar to that present in fluoroscopic imaging. This issue predisposes clinicians to laborious manual intervention in order to align anatomical structures in sequential perfusion frames, thus hindering automation o

    Automatic Spatiotemporal Analysis of Cardiac Image Series

    Get PDF
    RÉSUMÉ À ce jour, les maladies cardiovasculaires demeurent au premier rang des principales causes de décès en Amérique du Nord. Chez l’adulte et au sein de populations de plus en plus jeunes, la soi-disant épidémie d’obésité entraînée par certaines habitudes de vie tels que la mauvaise alimentation, le manque d’exercice et le tabagisme est lourde de conséquences pour les personnes affectées, mais aussi sur le système de santé. La principale cause de morbidité et de mortalité chez ces patients est l’athérosclérose, une accumulation de plaque à l’intérieur des vaisseaux sanguins à hautes pressions telles que les artères coronaires. Les lésions athérosclérotiques peuvent entraîner l’ischémie en bloquant la circulation sanguine et/ou en provoquant une thrombose. Cela mène souvent à de graves conséquences telles qu’un infarctus. Outre les problèmes liés à la sténose, les parois artérielles des régions criblées de plaque augmentent la rigidité des parois vasculaires, ce qui peut aggraver la condition du patient. Dans la population pédiatrique, la pathologie cardiovasculaire acquise la plus fréquente est la maladie de Kawasaki. Il s’agit d’une vasculite aigüe pouvant affecter l’intégrité structurale des parois des artères coronaires et mener à la formation d’anévrismes. Dans certains cas, ceux-ci entravent l’hémodynamie artérielle en engendrant une perfusion myocardique insuffisante et en activant la formation de thromboses. Le diagnostic de ces deux maladies coronariennes sont traditionnellement effectués à l’aide d’angiographies par fluoroscopie. Pendant ces examens paracliniques, plusieurs centaines de projections radiographiques sont acquises en séries suite à l’infusion artérielle d’un agent de contraste. Ces images révèlent la lumière des vaisseaux sanguins et la présence de lésions potentiellement pathologiques, s’il y a lieu. Parce que les séries acquises contiennent de l’information très dynamique en termes de mouvement du patient volontaire et involontaire (ex. battements cardiaques, respiration et déplacement d’organes), le clinicien base généralement son interprétation sur une seule image angiographique où des mesures géométriques sont effectuées manuellement ou semi-automatiquement par un technicien en radiologie. Bien que l’angiographie par fluoroscopie soit fréquemment utilisé partout dans le monde et souvent considéré comme l’outil de diagnostic “gold-standard” pour de nombreuses maladies vasculaires, la nature bidimensionnelle de cette modalité d’imagerie est malheureusement très limitante en termes de spécification géométrique des différentes régions pathologiques. En effet, la structure tridimensionnelle des sténoses et des anévrismes ne peut pas être pleinement appréciée en 2D car les caractéristiques observées varient selon la configuration angulaire de l’imageur. De plus, la présence de lésions affectant les artères coronaires peut ne pas refléter la véritable santé du myocarde, car des mécanismes compensatoires naturels (ex. vaisseaux----------ABSTRACT Cardiovascular disease continues to be the leading cause of death in North America. In adult and, alarmingly, ever younger populations, the so-called obesity epidemic largely driven by lifestyle factors that include poor diet, lack of exercise and smoking, incurs enormous stresses on the healthcare system. The primary cause of serious morbidity and mortality for these patients is atherosclerosis, the build up of plaque inside high pressure vessels like the coronary arteries. These lesions can lead to ischemic disease and may progress to precarious blood flow blockage or thrombosis, often with infarction or other severe consequences. Besides the stenosis-related outcomes, the arterial walls of plaque-ridden regions manifest increased stiffness, which may exacerbate negative patient prognosis. In pediatric populations, the most prevalent acquired cardiovascular pathology is Kawasaki disease. This acute vasculitis may affect the structural integrity of coronary artery walls and progress to aneurysmal lesions. These can hinder the blood flow’s hemodynamics, leading to inadequate downstream perfusion, and may activate thrombus formation which may lead to precarious prognosis. Diagnosing these two prominent coronary artery diseases is traditionally performed using fluoroscopic angiography. Several hundred serial x-ray projections are acquired during selective arterial infusion of a radiodense contrast agent, which reveals the vessels’ luminal area and possible pathological lesions. The acquired series contain highly dynamic information on voluntary and involuntary patient movement: respiration, organ displacement and heartbeat, for example. Current clinical analysis is largely limited to a single angiographic image where geometrical measures will be performed manually or semi-automatically by a radiological technician. Although widely used around the world and generally considered the gold-standard diagnosis tool for many vascular diseases, the two-dimensional nature of this imaging modality is limiting in terms of specifying the geometry of various pathological regions. Indeed, the 3D structures of stenotic or aneurysmal lesions may not be fully appreciated in 2D because their observable features are dependent on the angular configuration of the imaging gantry. Furthermore, the presence of lesions in the coronary arteries may not reflect the true health of the myocardium, as natural compensatory mechanisms may obviate the need for further intervention. In light of this, cardiac magnetic resonance perfusion imaging is increasingly gaining attention and clinical implementation, as it offers a direct assessment of myocardial tissue viability following infarction or suspected coronary artery disease. This type of modality is plagued, however, by motion similar to that present in fluoroscopic imaging. This issue predisposes clinicians to laborious manual intervention in order to align anatomical structures in sequential perfusion frames, thus hindering automation o

    Malarial retinopathy and neurovascular injury in paediatric cerebral malaria

    Get PDF
    Background Diseases of the brain are difficult to study because this organ is relatively inaccessible. Only one part of the central nervous system is available to direct, non-invasive observation – the retina. The concept of the retina as a window to the brain has created much interest in the retina as a source of potential markers of brain disease. Paediatric cerebral malaria is a severe neurological complication of infection with the parasite Plasmodium falciparum, which is responsible for death and disability in a significant number of children in sub-Saharan Africa. As with many neurological diseases, the precise mechanisms by which this infection causes damage to the brain remain unclear, and this hampers efforts to develop effective treatments. It may be that studying the retina in paediatric cerebral malaria could both illuminate pathogenesis specific to this disease, and also provide an illustration of how to approach retinal biomarkers in a new, and potentially more effective way. Methods I approached the aim of developing retinal features as markers of brain disease in paediatric cerebral malaria via several objectives. I made use of an existing clinical study to collect new retinal data from ophthalmoscopic examinations and fundus fluorescein angiograms from patients over three successive malaria seasons in Malawi, and added these to historical data obtained previously at the same site. I devised a new method for grading retinal images. I reviewed the biological plausibility of associations between retina and brain in cerebral malaria, and then considered analytical methods to interpret my retinal data effectively. Finally I estimated associations between retinal features, outcomes, and a radiological measure of brain swelling using combinations of regression models. Results My review of retinal and cerebral histopathology, vascular anatomy and physiology indicated that certain retinal and brain regions may be similarly prone to damage from sequestration as a result of interactions between aberrant rheology and microvascular geometry, such as branching patterns and arteriole to venule ratios. My review of evaluations of analogy and surrogacy suggested that biological similarities between retina and brain could be used to justify statistical evaluation of the amount of information the subject and object of the inference share about a common outcome, as used to assess surrogate end points for clinical trials. This kind of approach is able to address questions about whether a particular retinal feature is effectively equivalent to an analogous disease manifestation in the brain. I report analyses on three overlapping groups of subjects, all of whom had retinopathy positive cerebral malaria: children with admission ophthalmoscopy (n=817), children with admission fluorescein angiography (n=260), and children with admission angiography and MRI of the brain (n=134). Several retinal features are associated with death and longer time to recover consciousness in paediatric cerebral malaria. Broadly speaking, these features appear to reflect two processes: neurovascular sequestration (e.g. orange vessel discolouration and death), and neurovascular leakage (e.g. >5 sites of punctate leak and death). Respective adjusted odds ratios and 95% confidence intervals for these particular associations are: 2.88 (1.64-5.05); and 6.90 (1.52-31.3). Other related processes may also be important, such as ischaemia, which can be extensive. Associations between retina and brain are less clear, in part because of selection bias in the samples. Conclusions Neurovascular leak is important in fatal paediatric cerebral malaria, suggesting that fatal brain swelling may occur primarily as a result of vasogenic oedema. Other processes are also likely to be involved, particularly neurovascular sequestration, which is visible on retinal imaging as orange vessels or intravascular filling defects. Sequestration may plausibly cause leak through direct damage to tight junctions and by increasing transmural pressure secondary to venous congestion. Several types of retinal leakage are seen and some of these may represent re-perfusion rather than acute injury. Future work to investigate temporal changes in retinal signs may find clearer associations with radiological and clinical outcomes. The steps taken to evaluate retinal markers in cerebral malaria illustrate a more rigorous approach to retinal biomarkers in general, which can be applied to other neurological disease

    Combinatorial optimisation for arterial image segmentation.

    Get PDF
    Cardiovascular disease is one of the leading causes of the mortality in the western world. Many imaging modalities have been used to diagnose cardiovascular diseases. However, each has different forms of noise and artifacts that make the medical image analysis field important and challenging. This thesis is concerned with developing fully automatic segmentation methods for cross-sectional coronary arterial imaging in particular, intra-vascular ultrasound and optical coherence tomography, by incorporating prior and tracking information without any user intervention, to effectively overcome various image artifacts and occlusions. Combinatorial optimisation methods are proposed to solve the segmentation problem in polynomial time. A node-weighted directed graph is constructed so that the vessel border delineation is considered as computing a minimum closed set. A set of complementary edge and texture features is extracted. Single and double interface segmentation methods are introduced. Novel optimisation of the boundary energy function is proposed based on a supervised classification method. Shape prior model is incorporated into the segmentation framework based on global and local information through the energy function design and graph construction. A combination of cross-sectional segmentation and longitudinal tracking is proposed using the Kalman filter and the hidden Markov model. The border is parameterised using the radial basis functions. The Kalman filter is used to adapt the inter-frame constraints between every two consecutive frames to obtain coherent temporal segmentation. An HMM-based border tracking method is also proposed in which the emission probability is derived from both the classification-based cost function and the shape prior model. The optimal sequence of the hidden states is computed using the Viterbi algorithm. Both qualitative and quantitative results on thousands of images show superior performance of the proposed methods compared to a number of state-of-the-art segmentation methods

    Optogenetic Interrogation and Manipulation of Vascular Blood Flow in Cortex

    Get PDF
    Understanding blood flow regulatory mechanisms that correlate the regional blood flow with the level of local neuronal activity in brain is an ongoing research. Discerning different aspects of this coupling is of substantial importance in interpretation of functional imaging results, such as functional magnetic resonance imaging (fMRI), that rely on hemodynamic recordings to detect and image brain neuronal activity. Moreover, this understanding can provide insight into blood flow disorders under different pathophysiological conditions and possible treatments for such disorders. The blood regulatory mechanisms can be studied at two different; however, complementary levels: at the cellular level or at the vascular level. To fully understand the regulatory mechanisms in brain, it is essential to discern details of the coupling mechanism in each level. While, the cellular pathways of the coupling mechanism has been studied extensively in the past few decades, our understanding of the vascular response to brain activity is fairly basic. The main objective of this dissertation is to develop proper methods and instrumentation to interrogate regional cortical vasodynamics in response to local brain stimulation. For this purpose we offer the design of a custom-made OCT scanner and the necessary lens mechanisms to integrate the OCT system, fluorescence imaging, and optogenetic stimulation technologies in a single system. The design uses off-the-shelf components for a cost-effective design. The modular design of the device allows scientists to modify it in accordance with their research needs. With this multi-modal system we are able to monitor blood flow, blood velocity, and lumen diameter of pial vessels, simultaneously. Additionally, the system design provides the possibility of generating arbitrary spatial stimulation light pattern on brain. These abilities enables researchers to capture more diverse datasets and, eventually, obtain a more comprehensive picture of the vasodynamics in the brain. Along with the device we also proposed new biological experiments that are tailored to investigate the spatio-temporal properties of the vascular response to optical neurostimulation of the excitatory neurons. We demonstrate the ability of the proposed methods to investigate the effect of length and amplitude of stimulation on the temporal pattern of response in the blood flow, blood velocity, and diameter of the pial vessels. Moreover, we offer systemic approaches to investigate the spatial characteristics of the response in a vascular network. In these methods we apply arbitrary spatial patterns of optical stimulation to the cortex of transgenic mice and monitor the attributes of surrounding vessels. With this flexibility we were able to image the brain region that is influenced by a pial artery. After characterizing the spatio-temporal properties of the vascular blood flow response to optical neuro-modulation, we demonstrate the design and application of an optogenetic-based closed-loop controller mechanism in the brain. This controller, uses a proportional–integral–derivative (PID) compensator to engineer temporal optogenetic stimulation light pulses and maintain the flow of blood at various user defined levels in a set of selected arteries. Upon tuning the gain values of the PID controller we obtained a near to critically-damped response in the blood flow of selected arterial vessels

    Visual Impairment and Blindness

    Get PDF
    Blindness and vision impairment affect at least 2.2 billion people worldwide with most individuals having a preventable vision impairment. The majority of people with vision impairment are older than 50 years, however, vision loss can affect people of all ages. Reduced eyesight can have major and long-lasting effects on all aspects of life, including daily personal activities, interacting with the community, school and work opportunities, and the ability to access public services. This book provides an overview of the effects of blindness and visual impairment in the context of the most common causes of blindness in older adults as well as children, including retinal disorders, cataracts, glaucoma, and macular or corneal degeneration

    Anatomical Modeling of Cerebral Microvascular Structures: Application to Identify Biomarkers of Microstrokes

    Get PDF
    Les réseaux microvasculaires corticaux sont responsables du transport de l’oxygène et des substrats énergétiques vers les neurones. Ces réseaux réagissent dynamiquement aux demandes énergétiques lors d’une activation neuronale par le biais du couplage neurovasculaire. Afin d’élucider le rôle de la composante microvasculaire dans ce processus de couplage, l’utilisation de la modélisation in-formatique pourrait se révéler un élément clé. Cependant, la manque de méthodologies de calcul appropriées et entièrement automatisées pour modéliser et caractériser les réseaux microvasculaires reste l’un des principaux obstacles. Le développement d’une solution entièrement automatisée est donc important pour des explorations plus avancées, notamment pour quantifier l’impact des mal-formations vasculaires associées à de nombreuses maladies cérébrovasculaires. Une observation courante dans l’ensemble des troubles neurovasculaires est la formation de micro-blocages vascu-laires cérébraux (mAVC) dans les artérioles pénétrantes de la surface piale. De récents travaux ont démontré l’impact de ces événements microscopiques sur la fonction cérébrale. Par conséquent, il est d’une importance vitale de développer une approche non invasive et comparative pour identifier leur présence dans un cadre clinique. Dans cette thèse,un pipeline de traitement entièrement automatisé est proposé pour aborder le prob-lème de la modélisation anatomique microvasculaire. La méthode de modélisation consiste en un réseau de neurones entièrement convolutif pour segmenter les capillaires sanguins, un générateur de modèle de surface 3D et un algorithme de contraction de la géométrie pour produire des mod-èles graphiques vasculaires ne comportant pas de connections multiples. Une amélioration de ce pipeline est développée plus tard pour alléger l’exigence de maillage lors de la phase de représen-tation graphique. Un nouveau schéma permettant de générer un modèle de graphe est développé avec des exigences d’entrée assouplies et permettant de retenir les informations sur les rayons des vaisseaux. Il est inspiré de graphes géométriques déformants construits en respectant les morpholo-gies vasculaires au lieu de maillages de surface. Un mécanisme pour supprimer la structure initiale du graphe à chaque exécution est implémenté avec un critère de convergence pour arrêter le pro-cessus. Une phase de raffinement est introduite pour obtenir des modèles vasculaires finaux. La modélisation informatique développée est ensuite appliquée pour simuler les signatures IRM po-tentielles de mAVC, combinant le marquage de spin artériel (ASL) et l’imagerie multidirectionnelle pondérée en diffusion (DWI). L’hypothèse est basée sur des observations récentes démontrant une réorientation radiale de la microvascularisation dans la périphérie du mAVC lors de la récupéra-tion chez la souris. Des lits capillaires synthétiques, orientés aléatoirement et radialement, et des angiogrammes de tomographie par cohérence optique (OCT), acquis dans le cortex de souris (n = 5) avant et après l’induction d’une photothrombose ciblée, sont analysés. Les graphes vasculaires informatiques sont exploités dans un simulateur 3D Monte-Carlo pour caractériser la réponse par résonance magnétique (MR), tout en considérant les effets des perturbations du champ magnétique causées par la désoxyhémoglobine, et l’advection et la diffusion des spins nucléaires. Le pipeline graphique proposé est validé sur des angiographies synthétiques et réelles acquises avec différentes modalités d’imagerie. Comparé à d’autres méthodes effectuées dans le milieu de la recherche, les expériences indiquent que le schéma proposé produit des taux d’erreur géométriques et topologiques amoindris sur divers angiogrammes. L’évaluation confirme également l’efficacité de la méthode proposée en fournissant des modèles représentatifs qui capturent tous les aspects anatomiques des structures vasculaires. Ensuite, afin de trouver des signatures de mAVC basées sur le signal IRM, la modélisation vasculaire proposée est exploitée pour quantifier le rapport de perte de signal intravoxel minimal lors de l’application de plusieurs directions de gradient, à des paramètres de séquence variables avec et sans ASL. Avec l’ASL, les résultats démontrent une dif-férence significative (p <0,05) entre le signal calculé avant et 3 semaines après la photothrombose. La puissance statistique a encore augmenté (p <0,005) en utilisant des angiogrammes capturés à la semaine suivante. Sans ASL, aucun changement de signal significatif n’est trouvé. Des rapports plus élevés sont obtenus à des intensités de champ magnétique plus faibles (par exemple, B0 = 3) et une lecture TE plus courte (<16 ms). Cette étude suggère que les mAVC pourraient être carac-térisés par des séquences ASL-DWI, et fournirait les informations nécessaires pour les validations expérimentales postérieures et les futurs essais comparatifs.----------ABSTRACT Cortical microvascular networks are responsible for carrying the necessary oxygen and energy substrates to our neurons. These networks react to the dynamic energy demands during neuronal activation through the process of neurovascular coupling. A key element in elucidating the role of the microvascular component in the brain is through computational modeling. However, the lack of fully-automated computational frameworks to model and characterize these microvascular net-works remains one of the main obstacles. Developing a fully-automated solution is thus substantial for further explorations, especially to quantify the impact of cerebrovascular malformations associ-ated with many cerebrovascular diseases. A common pathogenic outcome in a set of neurovascular disorders is the formation of microstrokes, i.e., micro occlusions in penetrating arterioles descend-ing from the pial surface. Recent experiments have demonstrated the impact of these microscopic events on brain function. Hence, it is of vital importance to develop a non-invasive and translatable approach to identify their presence in a clinical setting. In this thesis, a fully automatic processing pipeline to address the problem of microvascular anatom-ical modeling is proposed. The modeling scheme consists of a fully-convolutional neural network to segment microvessels, a 3D surface model generator and a geometry contraction algorithm to produce vascular graphical models with a single connected component. An improvement on this pipeline is developed later to alleviate the requirement of water-tight surface meshes as inputs to the graphing phase. The novel graphing scheme works with relaxed input requirements and intrin-sically captures vessel radii information, based on deforming geometric graphs constructed within vascular boundaries instead of surface meshes. A mechanism to decimate the initial graph struc-ture at each run is formulated with a convergence criterion to stop the process. A refinement phase is introduced to obtain final vascular models. The developed computational modeling is then ap-plied to simulate potential MRI signatures of microstrokes, combining arterial spin labeling (ASL) and multi-directional diffusion-weighted imaging (DWI). The hypothesis is driven based on recent observations demonstrating a radial reorientation of microvasculature around the micro-infarction locus during recovery in mice. Synthetic capillary beds, randomly- and radially oriented, and op-tical coherence tomography (OCT) angiograms, acquired in the barrel cortex of mice (n=5) before and after inducing targeted photothrombosis, are analyzed. The computational vascular graphs are exploited within a 3D Monte-Carlo simulator to characterize the magnetic resonance (MR) re-sponse, encompassing the effects of magnetic field perturbations caused by deoxyhemoglobin, and the advection and diffusion of the nuclear spins. The proposed graphing pipeline is validated on both synthetic and real angiograms acquired with different imaging modalities. Compared to other efficient and state-of-the-art graphing schemes, the experiments indicate that the proposed scheme produces the lowest geometric and topological error rates on various angiograms. The evaluation also confirms the efficiency of the proposed scheme in providing representative models that capture all anatomical aspects of vascular struc-tures. Next, searching for MRI-based signatures of microstokes, the proposed vascular modeling is exploited to quantify the minimal intravoxel signal loss ratio when applying multiple gradient di-rections, at varying sequence parameters with and without ASL. With ASL, the results demonstrate a significant difference (p<0.05) between the signal-ratios computed at baseline and 3 weeks after photothrombosis. The statistical power further increased (p<0.005) using angiograms captured at week 4. Without ASL, no reliable signal change is found. Higher ratios with improved significance are achieved at low magnetic field strengths (e.g., at 3 Tesla) and shorter readout TE (<16 ms). This study suggests that microstrokes might be characterized through ASL-DWI sequences, and provides necessary insights for posterior experimental validations, and ultimately, future transla-tional trials

    Développement des systèmes d’imagerie basés sur la tomographie par cohérence optique visant l’étude des maladies cardiovasculaires

    Get PDF
    Les maladies cardiovasculaires (CVD) sont la principale cause de décès depuis des décennies. Son taux de morbidité élevé engendre un fardeau social et économique énorme et à la société. L’imagerie biomédicale est un outil important pour étudier et évaluer les CVDs. Notamment, la tomographie par cohérence optique (OCT) a montré des avantages attrayants pour la recherche appliquée aux CVDs. Le but global de cette thèse est le développement de systèmes OCT combinés avec d’autres techniques d’imagerie optique pour étudier les CVDs. Le premier objectif est de développer un système d'imagerie intravasculaire combinant l’OCT et l'imagerie par fluorescence proche infrarouge (NIRF), qui pourrait à terme être utilisé pour la détection et l'évaluation de l'athérosclérose dans les artères coronaires. L’originalité du travail se situe dans l’utilisation d’une nouvelle technique de détection de photons, la détection de photons à déclenchement rapide, intégrée dans notre système d’imagerie, ce qui a considérablement amélioré le rapport signal sur bruit et la sensibilité en profondeur de la NIRF. Une expérience ex vivo dans des conditions réalistes a validé le mécanisme de notre système d'imagerie intravasculaire à double modalité au niveau des aspects optique, mécanique et logiciel. Les images hybrides provenant de l'OCT et de la NIRF ont fourni des informations structurelles et moléculaires sur le fantôme imitant le vaisseau sanguin, ce qui suggère un grand potentiel d’utilisation de notre système d'imagerie chez des modèles animaux. Le deuxième objectif de cette thèse était d’étudier les impacts de l’athérosclérose sur différents aspects du cerveau de souris avec l’aide de plusieurs techniques d’imagerie optique, y compris l’imagerie intrinsèque optique, l’OCT et la microscopie à deux-photon. En comparaison avec les souris athérosclérotiques jeunes, le groupe âgé a montré un changement de concentration plus faible en hémoglobine oxygénée, hémoglobine désoxygénée et hémoglobine totale dans le cortex somatosensoriel à la suite de la stimulation par vibrisse, ce qui indique que la maladie d’athérosclérose réduit la réponse hémodynamique à la stimulation sensorielle. Les résultats obtenus à partir des données Doppler OCT ont révélé que le diamètre et le débit sanguin moyen des artérioles descendantes chez les souris ATX âgées étaient significativement plus petits comparés avec ceux des souris ATX jeunes, ce qui suggère que l'athérosclérose entraîne une dégénérescence structurelle et fonctionnelle des artérioles. L’altération fonctionnelle a également été observée dans les capillaires chez les souris ATX âgées, caractérisée par une plus faible vitesse es globules rouges (RBC), un plus faible flux de RBC, un plus faible hématocrite et une plus grande hétérogénéité du temps de transit capillaire. L’oxygénation tissulaire évaluée par la microscopie à deux photons a confirmé que l’altération de la microvascularisation liée à l’athérosclérose compromettait l’apport d’oxygène au tissu cérébral, amenant une hypoxie cérébrale chez les vieilles souris ATX. Les capillaires chez les souris ATX âgées ont été trouvés dilatés, ce qui pourrait être un mécanisme de régulation servant à compenser partiellement la diminution du débit sanguin associée à l'athérosclérose. Le troisième objectif de cette thèse est d’étudier la réparation du tissu cérébral et la régénération microvasculaire suite à un accident vasculaire cérébral (AVC) ischémique chez des souris en utilisant un système OCT construit dans le laboratoire. Le modèle d'AVC ischémique a été créé par occlusion photo-thrombotique des capillaires. Sur les images de l'OCT, seuls les tissus cérébraux profonds ont été endommagés par l'AVC ischémique, alors que les tissus proches de la surface corticale étaient intacts bien qu'ils aient été exposés à une intensité de laser plus élevée pendant la photo-thrombose. Cette observation implique que les tissus cérébraux profonds sont plus vulnérables lorsque l’apport d’oxygène des capillaires est interrompu au cours d’un AVC ischémique. Au cours de la récupération post-AVC, la lésion ischémique diminuait pendant que la régénération microvasculaire progressait. De plus, le réseau capillaire nouvellement formé autour de la lésion avait une structure hautement organisée et directionnelle avec un grand pourcentage de segments capillaires s'étendant vers le centre ischémique. Plus le réseau capillaire était profond, mieux sa structure était organisée, ce qui suggère que l'oxygénation des tissus profonds est plus dépendante du réseau capillaire. Notre analyse des événements de blocage capillaire a révélé que l’AVC ischémique augmentait à la fois la densité et l’incidence de blocage capillaire. Étant donné que le blocage capillaire pourrait entraîner une réduction du débit sanguin cérébral, il pourrait être utile de le cibler pour chercher de nouveaux traitements pour l'AVC.----------ABSTRACT Cardiovascular diseases (CVD) have been the leading cause of death for decades, and their high morbidity rate has led to enormous social and economic burden to both patients and society. Biomedical imaging systems are important tools to study and assess CVDs. Optical coherence tomography (OCT) has shown appealing advantages in CVD research. The general purpose of this thesis is the development of OCT-based imaging systems coupled with other optical imaging techniques to investigate CVDs. The first objective of this thesis is to develop an intravascular imaging system combining OCT and near infrared fluorescence (NIRF) imaging, which could ultimately be used for the detection and evaluation of atherosclerosis in coronary arteries. A novel photon detection technique, fast time-gating photon detection, was integrated into our imaging system, which improved significantly the signal-to-noise ratio and the depth sensitivity of NIRF. Ex vivo experiment under realist conditions validated the mechanism of our dual modality intravascular imaging system in terms of the optical, mechanical and software aspects. The hybrid images from OCT and NIRF provided structural and molecular information on the vessel-mimicking phantom, suggesting a great potential of our imaging system to be used in animal models. The second objective of this thesis is to study the impact of atherosclerotic disease on different aspects of mouse brain by using a variety of high-resolution optical imaging techniques, including intrinsic optical signal imaging, OCT and two-photon microscopy. Compared with the young atherosclerotic (ATX) mice, the old ones displayed a smaller change in the concentration of oxygenated hemoglobin, deoxygenated hemoglobin and total hemoglobin in the barrel cortex following whisker stimulation, which indicates that atherosclerotic disease is associated with reduced hemodynamic response to sensory stimulation. Results derived from Doppler OCT data revealed that the diameter and the mean blood flow of diving arterioles in the old ATX mice were significantly smaller compared with those in the young ATX mice, suggesting that atherosclerosis leads to structural and functional degeneration in descending arterioles. Functional alteration was also observed in capillaries among the old ATX mice with lower red blood cell (RBC) speed, lower RBC flux, lower hematocrit and higher transit time heterogeneity. Tissue oxygenation assessed by two-photon microscopy confirmed that atherosclerosis-related microvasculature impairment severely compromised oxygen supply to brain tissue, causing cerebral hypoxia in the old ATX mice. Capillaries in the old ATX mice were found dilated, which could be a regulatory mechanism of partially compensating atherosclerosis-associated blood flow decrease. The third objective of this thesis is to study post-stroke tissue repair and microvasculature regeneration and function in a mouse model of stroke using a custom-made OCT imaging system. Ischemic stroke model was created by photo-thrombotic occlusion of capillaries. On OCT structural and angiographic images, only deep cerebral tissue was found damaged by the ischemic stroke, whereas tissue close to the cortical surface seemed intact although it was exposed to a high laser intensity during the photo-thrombosis. This observation implies that deep cerebral tissue is more vulnerable when oxygen supply from capillaries are interrupted during ischemic stroke. Over the course of post-stroke recovery, ischemic lesion diminished while microvasculature regeneration progressed. Furthermore, the newly formed capillary network surrounding the lesion had a highly organized and directional structure with a large percentage of capillary segments stretching towards the ischemic center. Deeper de novo microvasculature had a better organized structure than shallower one, suggesting that deeper tissue oxygenation has a higher dependence on capillary network. Our stalling event analysis revealed that ischemic stroke increased both stalling density and incidence. As stalling can lead to cerebral blood flow reduction, targeting post-stroke stalling could be useful to develop new treatment for stroke
    • …
    corecore