183 research outputs found

    Spatio-temporal Video Re-localization by Warp LSTM

    Full text link
    The need for efficiently finding the video content a user wants is increasing because of the erupting of user-generated videos on the Web. Existing keyword-based or content-based video retrieval methods usually determine what occurs in a video but not when and where. In this paper, we make an answer to the question of when and where by formulating a new task, namely spatio-temporal video re-localization. Specifically, given a query video and a reference video, spatio-temporal video re-localization aims to localize tubelets in the reference video such that the tubelets semantically correspond to the query. To accurately localize the desired tubelets in the reference video, we propose a novel warp LSTM network, which propagates the spatio-temporal information for a long period and thereby captures the corresponding long-term dependencies. Another issue for spatio-temporal video re-localization is the lack of properly labeled video datasets. Therefore, we reorganize the videos in the AVA dataset to form a new dataset for spatio-temporal video re-localization research. Extensive experimental results show that the proposed model achieves superior performances over the designed baselines on the spatio-temporal video re-localization task

    Few-Shot Transformation of Common Actions into Time and Space

    Get PDF

    Few-Shot Transformation of Common Actions into Time and Space

    Get PDF
    This paper introduces the task of few-shot common action localization in time and space. Given a few trimmed support videos containing the same but unknown action, we strive for spatio-temporal localization of that action in a long untrimmed query video. We do not require any class labels, interval bounds, or bounding boxes. To address this challenging task, we introduce a novel few-shot transformer architecture with a dedicated encoder-decoder structure optimized for joint commonality learning and localization prediction, without the need for proposals. Experiments on our reorganizations of the AVA and UCF101-24 datasets show the effectiveness of our approach for few-shot common action localization, even when the support videos are noisy. Although we are not specifically designed for common localization in time only, we also compare favorably against the few-shot and one-shot state-of-the-art in this setting. Lastly, we demonstrate that the few-shot transformer is easily extended to common action localization per pixel

    Predicting Deeper into the Future of Semantic Segmentation

    Get PDF
    The ability to predict and therefore to anticipate the future is an important attribute of intelligence. It is also of utmost importance in real-time systems, e.g. in robotics or autonomous driving, which depend on visual scene understanding for decision making. While prediction of the raw RGB pixel values in future video frames has been studied in previous work, here we introduce the novel task of predicting semantic segmentations of future frames. Given a sequence of video frames, our goal is to predict segmentation maps of not yet observed video frames that lie up to a second or further in the future. We develop an autoregressive convolutional neural network that learns to iteratively generate multiple frames. Our results on the Cityscapes dataset show that directly predicting future segmentations is substantially better than predicting and then segmenting future RGB frames. Prediction results up to half a second in the future are visually convincing and are much more accurate than those of a baseline based on warping semantic segmentations using optical flow.Comment: Accepted to ICCV 2017. Supplementary material available on the authors' webpage

    Video Object Detection with an Aligned Spatial-Temporal Memory

    Full text link
    We introduce Spatial-Temporal Memory Networks for video object detection. At its core, a novel Spatial-Temporal Memory module (STMM) serves as the recurrent computation unit to model long-term temporal appearance and motion dynamics. The STMM's design enables full integration of pretrained backbone CNN weights, which we find to be critical for accurate detection. Furthermore, in order to tackle object motion in videos, we propose a novel MatchTrans module to align the spatial-temporal memory from frame to frame. Our method produces state-of-the-art results on the benchmark ImageNet VID dataset, and our ablative studies clearly demonstrate the contribution of our different design choices. We release our code and models at http://fanyix.cs.ucdavis.edu/project/stmn/project.html
    • …
    corecore