2,157 research outputs found

    Interactive tag maps and tag clouds for the multiscale exploration of large spatio-temporal datasets

    Get PDF
    'Tag clouds' and 'tag maps' are introduced to represent geographically referenced text. In combination, these aspatial and spatial views are used to explore a large structured spatio-temporal data set by providing overviews and filtering by text and geography. Prototypes are implemented using freely available technologies including Google Earth and Yahoo! 's Tag Map applet. The interactive tag map and tag cloud techniques and the rapid prototyping method used are informally evaluated through successes and limitations encountered. Preliminary evaluation suggests that the techniques may be useful for generating insights when visualizing large data sets containing geo-referenced text strings. The rapid prototyping approach enabled the technique to be developed and evaluated, leading to geovisualization through which a number of ideas were generated. Limitations of this approach are reflected upon. Tag placement, generalisation and prominence at different scales are issues which have come to light in this study that warrant further work

    Ensuring the visibility and traceability of items through logistics chain of automotive industry based on AutoEPCNet Usage

    Get PDF
    Traceability in logistics is the capability of the participants to trace the products throughout the supply chain by means of either the product and/or container identifiers in a forward and/or backward direction. In today's competitive economic environment, traceability is a key concept related to all products and all types of supply chains. The goal of this paper is to describe development of application that enables to create and share information about the physical movement and status of products as they travel throughout the supply chain. The main purpose of this paper is to describe the development of RFID based track and trace system for ensuring the visibility and traceability of items in logistics chain especially in automotive industry. The proposed solution is based on EPCglobal Network Architecture

    Robot control based on qualitative representation of human trajectories

    Get PDF
    A major challenge for future social robots is the high-level interpretation of human motion, and the consequent generation of appropriate robot actions. This paper describes some fundamental steps towards the real-time implementation of a system that allows a mobile robot to transform quantitative information about human trajectories (i.e. coordinates and speed) into qualitative concepts, and from these to generate appropriate control commands. The problem is formulated using a simple version of qualitative trajectory calculus, then solved using an inference engine based on fuzzy temporal logic and situation graph trees. Preliminary results are discussed and future directions of the current research are drawn
    corecore