689 research outputs found

    Spatio-temporal quasi-flat zones for morphological video segmentation

    Get PDF
    International audienceIn order to face the various needs of users, user-driven seg-mentation methods are expected to provide more relevant results than fully automatic approaches. Within Mathematical Morphology, several user-driven approaches have been proposed, mostly relying on the watershed transform. Nevertheless, Soille (IEEE TPAMI, 2008) has recently suggested another solution by gathering puzzle pieces computed as Quasi-Flat Zones (QFZ) of an image. In this paper, we study more deeply this user-driven segmentation scheme in the context of video data. Thus we also introduce the concept of Spatio-Temporal QFZ and propose several methods for extracting such zones from a video sequence

    A graph-based mathematical morphology reader

    Full text link
    This survey paper aims at providing a "literary" anthology of mathematical morphology on graphs. It describes in the English language many ideas stemming from a large number of different papers, hence providing a unified view of an active and diverse field of research

    Region-based representations of image and video: segmentation tools for multimedia services

    Get PDF
    This paper discusses region-based representations of image and video that are useful for multimedia services such as those supported by the MPEG-4 and MPEG-7 standards. Classical tools related to the generation of the region-based representations are discussed. After a description of the main processing steps and the corresponding choices in terms of feature spaces, decision spaces, and decision algorithms, the state of the art in segmentation is reviewed. Mainly tools useful in the context of the MPEG-4 and MPEG-7 standards are discussed. The review is structured around the strategies used by the algorithms (transition based or homogeneity based) and the decision spaces (spatial, spatio-temporal, and temporal). The second part of this paper proposes a partition tree representation of images and introduces a processing strategy that involves a similarity estimation step followed by a partition creation step. This strategy tries to find a compromise between what can be done in a systematic and universal way and what has to be application dependent. It is shown in particular how a single partition tree created with an extremely simple similarity feature can support a large number of segmentation applications: spatial segmentation, motion estimation, region-based coding, semantic object extraction, and region-based retrieval.Peer ReviewedPostprint (published version

    Fast Quasi-Flat Zones Filtering Using Area Threshold and Region Merging

    Get PDF
    International audienceQuasi-flat zones are morphological operators which segment the image into homogeneous regions according to certain criteria. They are used as an image simplification tool or an image segmentation pre-processing, but they induced a very important oversegmentation. Several filtering methods have been proposed to deal with this issue but they suffer from different drawbacks, e.g., loss of quality or edge deformation. In this article, we propose a new method based on existing approaches which achieves better or similar results than existing approaches, does not suffer from their drawbacks and requires less computation time. It consists of two successive steps. First, small quasi-flat zones are removed according to a minimal area threshold. They are then filled through the growth of remaining zones

    Tree leaves extraction in natural images: Comparative study of pre-processing tools and segmentation methods

    Get PDF
    International audienceIn this paper, we propose a comparative study of various segmentation methods applied to the extraction of tree leaves from natural images. This study follows the design of a mobile application, developed by Cerutti et al. (published in ReVeS Participation-Tree Species Classification Using Random Forests and Botanical Features. CLEF 2012), to highlight the impact of the choices made for segmentation aspects. All the tests are based on a database of 232 images of tree leaves depicted on natural background from smartphones acquisitions. We also propose to study the improvements, in terms of performance, by using pre-processing tools such as the interaction between the user and the application through an input stroke, as well as the use of color distance maps. The results presented in this paper shows that the method developed by Cerutti et al. (denoted Guided Active Contour), obtains the best score for almost all observation criteria. Finally we detail our online benchmark composed of 14 unsupervised methods and 6 supervised ones

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∌ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    Segmentation based coding of depth Information for 3D video

    Get PDF
    Increased interest in 3D artifact and the need of transmitting, broadcasting and saving the whole information that represents the 3D view, has been a hot topic in recent years. Knowing that adding the depth information to the views will increase the encoding bitrate considerably, we decided to find a new approach to encode/decode the depth information for 3D video. In this project, different approaches to encode/decode the depth information are experienced and a new method is implemented which its result is compared to the best previously developed method considering both bitrate and quality (PSNR)

    Object-based video representations: shape compression and object segmentation

    Get PDF
    Object-based video representations are considered to be useful for easing the process of multimedia content production and enhancing user interactivity in multimedia productions. Object-based video presents several new technical challenges, however. Firstly, as with conventional video representations, compression of the video data is a requirement. For object-based representations, it is necessary to compress the shape of each video object as it moves in time. This amounts to the compression of moving binary images. This is achieved by the use of a technique called context-based arithmetic encoding. The technique is utilised by applying it to rectangular pixel blocks and as such it is consistent with the standard tools of video compression. The blockbased application also facilitates well the exploitation of temporal redundancy in the sequence of binary shapes. For the first time, context-based arithmetic encoding is used in conjunction with motion compensation to provide inter-frame compression. The method, described in this thesis, has been thoroughly tested throughout the MPEG-4 core experiment process and due to favourable results, it has been adopted as part of the MPEG-4 video standard. The second challenge lies in the acquisition of the video objects. Under normal conditions, a video sequence is captured as a sequence of frames and there is no inherent information about what objects are in the sequence, not to mention information relating to the shape of each object. Some means for segmenting semantic objects from general video sequences is required. For this purpose, several image analysis tools may be of help and in particular, it is believed that video object tracking algorithms will be important. A new tracking algorithm is developed based on piecewise polynomial motion representations and statistical estimation tools, e.g. the expectationmaximisation method and the minimum description length principle
    • 

    corecore