6,507 research outputs found

    A study in the cognition of individuals’ identity: Solving the problem of singular cognition in object and agent tracking

    Get PDF
    This article compares the ability to track individuals lacking mental states with the ability to track intentional agents. It explains why reference to individuals raises the problem of explaining how cognitive agents track unique individuals and in what sense reference is based on procedures of perceptual-motor and epistemic tracking. We suggest applying the notion of singular-files from theories in perception and semantics to the problem of tracking intentional agents. In order to elucidate the nature of agent-files, three views of the relation between object- and agent-tracking are distinguished: the Independence, Deflationary and Organism-Dependence Views. The correct view is argued to be the latter, which states that perceptual and epistemic tracking of a unique human organism requires tracking both its spatio-temporal object-properties and its agent-properties

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table

    A Neural Model of How the Brain Computes Heading from Optic Flow in Realistic Scenes

    Full text link
    Animals avoid obstacles and approach goals in novel cluttered environments using visual information, notably optic flow, to compute heading, or direction of travel, with respect to objects in the environment. We present a neural model of how heading is computed that describes interactions among neurons in several visual areas of the primate magnocellular pathway, from retina through V1, MT+, and MSTd. The model produces outputs which are qualitatively and quantitatively similar to human heading estimation data in response to complex natural scenes. The model estimates heading to within 1.5° in random dot or photo-realistically rendered scenes and within 3° in video streams from driving in real-world environments. Simulated rotations of less than 1 degree per second do not affect model performance, but faster simulated rotation rates deteriorate performance, as in humans. The model is part of a larger navigational system that identifies and tracks objects while navigating in cluttered environments.National Science Foundation (SBE-0354378, BCS-0235398); Office of Naval Research (N00014-01-1-0624); National-Geospatial Intelligence Agency (NMA201-01-1-2016

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Going Deeper into Action Recognition: A Survey

    Full text link
    Understanding human actions in visual data is tied to advances in complementary research areas including object recognition, human dynamics, domain adaptation and semantic segmentation. Over the last decade, human action analysis evolved from earlier schemes that are often limited to controlled environments to nowadays advanced solutions that can learn from millions of videos and apply to almost all daily activities. Given the broad range of applications from video surveillance to human-computer interaction, scientific milestones in action recognition are achieved more rapidly, eventually leading to the demise of what used to be good in a short time. This motivated us to provide a comprehensive review of the notable steps taken towards recognizing human actions. To this end, we start our discussion with the pioneering methods that use handcrafted representations, and then, navigate into the realm of deep learning based approaches. We aim to remain objective throughout this survey, touching upon encouraging improvements as well as inevitable fallbacks, in the hope of raising fresh questions and motivating new research directions for the reader

    Annotated Bibliography: Anticipation

    Get PDF

    Time-slice analysis of dyadic human activity

    Get PDF
    La reconnaissance d’activitĂ©s humaines Ă  partir de donnĂ©es vidĂ©o est utilisĂ©e pour la surveillance ainsi que pour des applications d’interaction homme-machine. Le principal objectif est de classer les vidĂ©os dans l’une des k classes d’actions Ă  partir de vidĂ©os entiĂšrement observĂ©es. Cependant, de tout temps, les systĂšmes intelligents sont amĂ©liorĂ©s afin de prendre des dĂ©cisions basĂ©es sur des incertitudes et ou des informations incomplĂštes. Ce besoin nous motive Ă  introduire le problĂšme de l’analyse de l’incertitude associĂ©e aux activitĂ©s humaines et de pouvoir passer Ă  un nouveau niveau de gĂ©nĂ©ralitĂ© liĂ© aux problĂšmes d’analyse d’actions. Nous allons Ă©galement prĂ©senter le problĂšme de reconnaissance d’activitĂ©s par intervalle de temps, qui vise Ă  explorer l’activitĂ© humaine dans un intervalle de temps court. Il a Ă©tĂ© dĂ©montrĂ© que l’analyse par intervalle de temps est utile pour la caractĂ©risation des mouvements et en gĂ©nĂ©ral pour l’analyse de contenus vidĂ©o. Ces Ă©tudes nous encouragent Ă  utiliser ces intervalles de temps afin d’analyser l’incertitude associĂ©e aux activitĂ©s humaines. Nous allons dĂ©tailler Ă  quel degrĂ© de certitude chaque activitĂ© se produit au cours de la vidĂ©o. Dans cette thĂšse, l’analyse par intervalle de temps d’activitĂ©s humaines avec incertitudes sera structurĂ©e en 3 parties. i) Nous prĂ©sentons une nouvelle famille de descripteurs spatiotemporels optimisĂ©s pour la prĂ©diction prĂ©coce avec annotations d’intervalle de temps. Notre reprĂ©sentation prĂ©dictive du point d’intĂ©rĂȘt spatiotemporel (Predict-STIP) est basĂ©e sur l’idĂ©e de la contingence entre intervalles de temps. ii) Nous exploitons des techniques de pointe pour extraire des points d’intĂ©rĂȘts afin de reprĂ©senter ces intervalles de temps. iii) Nous utilisons des relations (uniformes et par paires) basĂ©es sur les rĂ©seaux neuronaux convolutionnels entre les diffĂ©rentes parties du corps de l’individu dans chaque intervalle de temps. Les relations uniformes enregistrent l’apparence locale de la partie du corps tandis que les relations par paires captent les relations contextuelles locales entre les parties du corps. Nous extrayons les spĂ©cificitĂ©s de chaque image dans l’intervalle de temps et examinons diffĂ©rentes façons de les agrĂ©ger temporellement afin de gĂ©nĂ©rer un descripteur pour tout l’intervalle de temps. En outre, nous crĂ©ons une nouvelle base de donnĂ©es qui est annotĂ©e Ă  de multiples intervalles de temps courts, permettant la modĂ©lisation de l’incertitude inhĂ©rente Ă  la reconnaissance d’activitĂ©s par intervalle de temps. Les rĂ©sultats expĂ©rimentaux montrent l’efficience de notre stratĂ©gie dans l’analyse des mouvements humains avec incertitude.Recognizing human activities from video data is routinely leveraged for surveillance and human-computer interaction applications. The main focus has been classifying videos into one of k action classes from fully observed videos. However, intelligent systems must to make decisions under uncertainty, and based on incomplete information. This need motivates us to introduce the problem of analysing the uncertainty associated with human activities and move to a new level of generality in the action analysis problem. We also present the problem of time-slice activity recognition which aims to explore human activity at a small temporal granularity. Time-slice recognition is able to infer human behaviours from a short temporal window. It has been shown that temporal slice analysis is helpful for motion characterization and for video content representation in general. These studies motivate us to consider timeslices for analysing the uncertainty associated with human activities. We report to what degree of certainty each activity is occurring throughout the video from definitely not occurring to definitely occurring. In this research, we propose three frameworks for time-slice analysis of dyadic human activity under uncertainty. i) We present a new family of spatio-temporal descriptors which are optimized for early prediction with time-slice action annotations. Our predictive spatiotemporal interest point (Predict-STIP) representation is based on the intuition of temporal contingency between time-slices. ii) we exploit state-of-the art techniques to extract interest points in order to represent time-slices. We also present an accumulative uncertainty to depict the uncertainty associated with partially observed videos for the task of early activity recognition. iii) we use Convolutional Neural Networks-based unary and pairwise relations between human body joints in each time-slice. The unary term captures the local appearance of the joints while the pairwise term captures the local contextual relations between the parts. We extract these features from each frame in a time-slice and examine different temporal aggregations to generate a descriptor for the whole time-slice. Furthermore, we create a novel dataset which is annotated at multiple short temporal windows, allowing the modelling of the inherent uncertainty in time-slice activity recognition. All the three methods have been evaluated on TAP dataset. Experimental results demonstrate the effectiveness of our framework in the analysis of dyadic activities under uncertaint

    Differences in Encoding Strategy as a Potential Explanation for Age-Related Decline in Place Recognition Ability

    Get PDF
    The ability to recognise places is known to deteriorate with advancing age. In this study, we investigated the contribution of age-related changes in spatial encoding strategies to declining place recognition ability. We recorded eye movements while younger and older adults completed a place recognition task first described by Muffato et al. (2019). Participants first learned places, which were defined by an array of four objects, and then decided whether the next place they were shown was the same or different to the one they learned. Places could be shown from the same spatial perspective as during learning or from a shifted perspective (30° or 60°). Places that were different to those during learning were changed either by substituting an object in the place with a novel object or by swapping the locations of two objects. We replicated the findings of Muffato et al. (2019) showing that sensitivity to detect changes in a place declined with advancing age and declined when the spatial perspective was shifted. Additionally, older adults were particularly impaired on trials in which object locations were swapped; however, they were not differentially affected by perspective changes compared to younger adults. During place encoding, older adults produced more fixations and saccades, shorter fixation durations, and spent less time looking at objects compared to younger adults. Further, we present an analysis of gaze chaining, designed to capture spatio-temporal aspects of gaze behaviour. The chaining measure was a significant predictor of place recognition performance. We found significant differences between age groups on the chaining measure and argue that these differences in gaze behaviour are indicative of differences in encoding strategy between age groups. In summary, we report a direct replication of Muffato et al. (2019) and provide evidence for age-related differences in spatial encoding strategies, which are related to place recognition performance
    • 

    corecore