18 research outputs found

    On Motion Parameterizations in Image Sequences from Fixed Viewpoints

    Get PDF
    This dissertation addresses the problem of parameterizing object motion within a set of images taken with a stationary camera. We develop data-driven methods across all image scales: characterizing motion observed at the scale of individual pixels, along extended structures such as roads, and whole image deformations such as lungs deforming over time. The primary contributions include: a) fundamental studies of the relationship between spatio-temporal image derivatives accumulated at a pixel, and the object motions at that pixel,: b) data driven approaches to parameterize breath motion and reconstruct lung CT data volumes, and: c) defining and offering initial results for a new class of Partially Unsupervised Manifold Learning: PUML) problems, which often arise in medical imagery. Specifically, we create energy functions for measuring how consistent a given velocity vector is with observed spatio-temporal image derivatives. These energy functions are used to fit parametric snake models to roads using velocity constraints. We create an automatic data-driven technique for finding the breath phase of lung CT scans which is able to replace external belt measurements currently in use clinically. This approach is extended to automatically create a full deformation model of a CT lung volume during breathing or heart MRI during breathing and heartbeat. Additionally, motivated by real use cases, we address a scenario in which a dataset is collected along with meta-data which describes some, but not all, aspects of the dataset. We create an embedding which displays the remaining variability in a dataset after accounting for variability related to the meta-data

    Listening forward: approaching marine biodiversity assessments using acoustic methods

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mooney, T. A., Di Iorio, L., Lammers, M., Lin, T., Nedelec, S. L., Parsons, M., Radford, C., Urban, E., & Stanley, J. Listening forward: approaching marine biodiversity assessments using acoustic methods. Royal Society Open Science, 7(8), (2020): 201287, doi:10.1098/rsos.201287.Ecosystems and the communities they support are changing at alarmingly rapid rates. Tracking species diversity is vital to managing these stressed habitats. Yet, quantifying and monitoring biodiversity is often challenging, especially in ocean habitats. Given that many animals make sounds, these cues travel efficiently under water, and emerging technologies are increasingly cost-effective, passive acoustics (a long-standing ocean observation method) is now a potential means of quantifying and monitoring marine biodiversity. Properly applying acoustics for biodiversity assessments is vital. Our goal here is to provide a timely consideration of emerging methods using passive acoustics to measure marine biodiversity. We provide a summary of the brief history of using passive acoustics to assess marine biodiversity and community structure, a critical assessment of the challenges faced, and outline recommended practices and considerations for acoustic biodiversity measurements. We focused on temperate and tropical seas, where much of the acoustic biodiversity work has been conducted. Overall, we suggest a cautious approach to applying current acoustic indices to assess marine biodiversity. Key needs are preliminary data and sampling sufficiently to capture the patterns and variability of a habitat. Yet with new analytical tools including source separation and supervised machine learning, there is substantial promise in marine acoustic diversity assessment methods.Funding for development of this article was provided by the collaboration of the Urban Coast Institute (Monmouth University, NJ, USA), the Program for the Human Environment (The Rockefeller University, New York, USA) and the Scientific Committee on Oceanic Research. Partial support was provided to T.A.M. from the National Science Foundation grant OCE-1536782

    Proceedings of the 4th Symposium on Management of Future Motorway and Urban Traffic Systems 2022

    Get PDF
    The 4th Symposium on Management of Future Motorway and Urban Traffic Systems (MFTS) was held in Dresden, Germany, from November 30th to December 2nd, 2022. Organized by the Chair of Traffic Process Automation (VPA) at the “Friedrich List” Faculty of Transport and Traffic Sciences of the TU Dresden, the proceedings of this conference are published as volume 9 in the Chair’s publication series “Verkehrstelematik” and contain a large part of the presented conference extended abstracts. The focus of the MFTS conference 2022 was cooperative management of multimodal transport and reflected the vision of the professorship to be an internationally recognized group in ITS research and education with the goal of optimizing the operation of multimodal transport systems. In 14 MFTS sessions, current topics in demand and traffic management, traffic control in conventional, connected and automated transport, connected and autonomous vehicles, traffic flow modeling and simulation, new and shared mobility systems, digitization, and user behavior and safety were discussed. In addition, special sessions were organized, for example on “Human aspects in traffic modeling and simulation” and “Lesson learned from Covid19 pandemic”, whose descriptions and analyses are also included in these proceedings.:1 Connected and Automated Vehicles 1.1 Traffic-based Control of Truck Platoons on Freeways 1.2 A Lateral Positioning Strategy for Connected and Automated Vehicles in Lane-free Traffic 1.3 Simulation Methods for Mixed Legacy-Autonomous Mainline Train Operations 1.4 Can Dedicated Lanes for Automated Vehicles on Urban Roads Improve Traffic Efficiency? 1.5 GLOSA System with Uncertain Green and Red Signal Phases 2 New Mobility Systems 2.1 A New Model for Electric Vehicle Mobility and Energy Consumption in Urban Traffic Networks 2.2 Shared Autonomous Vehicles Implementation for a Disrupted Public Transport Network 3 Traffic Flow and Simulation 3.1 Multi-vehicle Stochastic Fundamental Diagram Consistent with Transportations Systems Theory 3.2 A RoundD-like Roundabout Scenario in CARLA Simulator 3.3 Multimodal Performance Evaluation of Urban Traffic Control: A Microscopic Simulation Study 3.4 A MILP Framework to Solve the Sustainable System Optimum with Link MFD Functions 3.5 On How Traffic Signals Impact the Fundamental Diagrams of Urban Roads 4 Traffic Control in Conventional Traffic 4.1 Data-driven Methods for Identifying Travel Conditions Based on Traffic and Weather Characteristics 4.2 AI-based Multi-class Traffic Model Oriented to Freeway Traffic Control 4.3 Exploiting Deep Learning and Traffic Models for Freeway Traffic Estimation 4.4 Automatic Design of Optimal Actuated Traffic Signal Control with Transit Signal Priority 4.5 A Deep Reinforcement Learning Approach for Dynamic Traffic Light Control with Transit Signal Priority 4.6 Towards Efficient Incident Detection in Real-time Traffic Management 4.7 Dynamic Cycle Time in Traffic Signal of Cyclic Max-Pressure Control 5 Traffic Control with Autonomous Vehicles 5.1 Distributed Ordering and Optimization for Intersection Management with Connected and Automated Vehicles 5.2 Prioritization of an Automated Shuttle for V2X Public Transport at a Signalized Intersection – a Real-life Demonstration 6 User Behaviour and Safety 6.1 Local Traffic Safety Analyzer (LTSA) - Improved Road Safety and Optimized Signal Control for Future Urban Intersections 7 Demand and Traffic Management 7.1 A Stochastic Programming Method for OD Estimation Using LBSN Check-in Data 7.2 Delineation of Traffic Analysis Zone for Public Transportation OD Matrix Estimation Based on Socio-spatial Practices 8 Workshops 8.1 How to Integrate Human Aspects Into Engineering Science of Transport and Traffic? - a Workshop Report about Discussions on Social Contextualization of Mobility 8.2 Learning from Covid: How Can we Predict Mobility Behaviour in the Face of Disruptive Events? – How to Investigate the Mobility of the FutureDas 4. Symposium zum Management zukünftiger Autobahn- und Stadtverkehrssysteme (MFTS) fand vom 30. November bis 2. Dezember 2022 in Dresden statt und wurde vom Lehrstuhl für Verkehrsprozessautomatisierung (VPA) an der Fakultät Verkehrswissenschaften„Friedrich List“ der TU Dresden organisiert. Der Tagungsband erscheint als Band 9 in der Schriftenreihe „Verkehrstelematik“ des Lehrstuhls und enthält einen Großteil der vorgestellten Extended-Abstracts des Symposiums. Der Schwerpunkt des MFTS-Symposiums 2022 lag auf dem kooperativen Management multimodalen Verkehrs und spiegelte die Vision der Professur wider, eine international anerkannte Gruppe in der ITS-Forschung und -Ausbildung mit dem Ziel der Optimierung des Betriebs multimodaler Transportsysteme zu sein. In 14 MFTS-Sitzungen wurden aktuelle Themen aus den Bereichen Nachfrage- und Verkehrsmanagement, Verkehrssteuerung im konventionellen, vernetzten und automatisierten Verkehr, vernetzte und autonome Fahrzeuge, Verkehrsflussmodellierung und -simulation, neue und geteilte Mobilitätssysteme, Digitalisierung sowie Nutzerverhalten und Sicherheit diskutiert. Darüber hinaus wurden Sondersitzungen organisiert, beispielsweise zu „Menschlichen Aspekten bei der Verkehrsmodellierung und -simulation“ und „Lektionen aus der Covid-19-Pandemie“, deren Beschreibungen und Analysen ebenfalls in diesen Tagungsband einfließen.:1 Connected and Automated Vehicles 1.1 Traffic-based Control of Truck Platoons on Freeways 1.2 A Lateral Positioning Strategy for Connected and Automated Vehicles in Lane-free Traffic 1.3 Simulation Methods for Mixed Legacy-Autonomous Mainline Train Operations 1.4 Can Dedicated Lanes for Automated Vehicles on Urban Roads Improve Traffic Efficiency? 1.5 GLOSA System with Uncertain Green and Red Signal Phases 2 New Mobility Systems 2.1 A New Model for Electric Vehicle Mobility and Energy Consumption in Urban Traffic Networks 2.2 Shared Autonomous Vehicles Implementation for a Disrupted Public Transport Network 3 Traffic Flow and Simulation 3.1 Multi-vehicle Stochastic Fundamental Diagram Consistent with Transportations Systems Theory 3.2 A RoundD-like Roundabout Scenario in CARLA Simulator 3.3 Multimodal Performance Evaluation of Urban Traffic Control: A Microscopic Simulation Study 3.4 A MILP Framework to Solve the Sustainable System Optimum with Link MFD Functions 3.5 On How Traffic Signals Impact the Fundamental Diagrams of Urban Roads 4 Traffic Control in Conventional Traffic 4.1 Data-driven Methods for Identifying Travel Conditions Based on Traffic and Weather Characteristics 4.2 AI-based Multi-class Traffic Model Oriented to Freeway Traffic Control 4.3 Exploiting Deep Learning and Traffic Models for Freeway Traffic Estimation 4.4 Automatic Design of Optimal Actuated Traffic Signal Control with Transit Signal Priority 4.5 A Deep Reinforcement Learning Approach for Dynamic Traffic Light Control with Transit Signal Priority 4.6 Towards Efficient Incident Detection in Real-time Traffic Management 4.7 Dynamic Cycle Time in Traffic Signal of Cyclic Max-Pressure Control 5 Traffic Control with Autonomous Vehicles 5.1 Distributed Ordering and Optimization for Intersection Management with Connected and Automated Vehicles 5.2 Prioritization of an Automated Shuttle for V2X Public Transport at a Signalized Intersection – a Real-life Demonstration 6 User Behaviour and Safety 6.1 Local Traffic Safety Analyzer (LTSA) - Improved Road Safety and Optimized Signal Control for Future Urban Intersections 7 Demand and Traffic Management 7.1 A Stochastic Programming Method for OD Estimation Using LBSN Check-in Data 7.2 Delineation of Traffic Analysis Zone for Public Transportation OD Matrix Estimation Based on Socio-spatial Practices 8 Workshops 8.1 How to Integrate Human Aspects Into Engineering Science of Transport and Traffic? - a Workshop Report about Discussions on Social Contextualization of Mobility 8.2 Learning from Covid: How Can we Predict Mobility Behaviour in the Face of Disruptive Events? – How to Investigate the Mobility of the Futur

    Visual attention and perception in scene understanding for social robotics

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Méthodes mathématiques d’analyse d’image pour les études de population transversales et longitudinales

    Get PDF
    In medicine, large scale population analysis aim to obtain statistical information in order to understand better diseases, identify their risk factors, develop preventive and curative treatments and improve the quality of life of the patients.In this thesis, we first introduce the medical context of Alzheimer’s disease, recall some concepts of statistical learning and the challenges that typically occurwhen applied in medical imaging. The second part focus on cross-sectional studies,i.e. at a single time point. We present an efficient method to classify white matter lesions based on support vector machines. Then we discuss the use of manifoldlearning techniques for image and shape analysis. Finally, we present extensions ofLaplacian eigenmaps to improve the low-dimension representations of patients usingthe combination of imaging and clinical data. The third part focus on longitudinalstudies, i.e. between several time points. We quantify the hippocampus deformations of patients via the large deformation diffeomorphic metric mapping frameworkto build disease progression classifiers. We introduce novel strategies and spatialregularizations for the classification and identification of biomarkers.En médecine, les analyses de population à grande échelle ont pour but d’obtenir des informations statistiques pour mieux comprendre des maladies, identifier leurs facteurs de risque, développer des traitements préventifs et curatifs et améliorer la qualité de vie des patients.Dans cette thèse, nous présentons d’abord le contexte médical de la maladie d’Alzheimer, rappelons certains concepts d’apprentissage statistique et difficultés rencontrées lors de l’application en imagerie médicale. Dans la deuxième partie,nous nous intéressons aux analyses transversales, c-a-d ayant un seul point temporel.Nous présentons une méthode efficace basée sur les séparateurs à vaste marge (SVM)permettant de classifier des lésions dans la matière blanche. Ensuite, nous étudions les techniques d’apprentissage de variétés pour l’analyse de formes et d’images, et présentons deux extensions des Laplacian eigenmaps améliorant la représentation de patients en faible dimension grâce à la combinaison de données d’imagerie et cliniques. Dans la troisième partie, nous nous intéressons aux analyses longitudinales, c-a-d entre plusieurs points temporels. Nous quantifions les déformations des hippocampus de patients via le modèle des larges déformations par difféomorphismes pour classifier les évolutions de la maladie. Nous introduisons de nouvelles stratégies et des régularisations spatiales pour la classification et l’identification de marqueurs biologiques

    Feature selection and hierarchical classifier design with applications to human motion recognition

    Get PDF
    The performance of a classifier is affected by a number of factors including classifier type, the input features and the desired output. This thesis examines the impact of feature selection and classification problem division on classification accuracy and complexity. Proper feature selection can reduce classifier size and improve classifier performance by minimizing the impact of noisy, redundant and correlated features. Noisy features can cause false association between the features and the classifier output. Redundant and correlated features increase classifier complexity without adding additional information. Output selection or classification problem division describes the division of a large classification problem into a set of smaller problems. Problem division can improve accuracy by allocating more resources to more difficult class divisions and enabling the use of more specific feature sets for each sub-problem. The first part of this thesis presents two methods for creating feature-selected hierarchical classifiers. The feature-selected hierarchical classification method jointly optimizes the features and classification tree-design using genetic algorithms. The multi-modal binary tree (MBT) method performs the class division and feature selection sequentially and tolerates misclassifications in the higher nodes of the tree. This yields a piecewise separation for classes that cannot be fully separated with a single classifier. Experiments show that the accuracy of MBT is comparable to other multi-class extensions, but with lower test time. Furthermore, the accuracy of MBT is significantly higher on multi-modal data sets. The second part of this thesis focuses on input feature selection measures. A number of filter-based feature subset evaluation measures are evaluated with the goal of assessing their performance with respect to specific classifiers. Although there are many feature selection measures proposed in literature, it is unclear which feature selection measures are appropriate for use with different classifiers. Sixteen common filter-based measures are tested on 20 real and 20 artificial data sets, which are designed to probe for specific feature selection challenges. The strengths and weaknesses of each measure are discussed with respect to the specific feature selection challenges in the artificial data sets, correlation with classifier accuracy and their ability to identify known informative features. The results indicate that the best filter measure is classifier-specific. K-nearest neighbours classifiers work well with subset-based RELIEF, correlation feature selection or conditional mutual information maximization, whereas Fisher's interclass separability criterion and conditional mutual information maximization work better for support vector machines. Based on the results of the feature selection experiments, two new filter-based measures are proposed based on conditional mutual information maximization, which performs well but cannot identify dependent features in a set and does not include a check for correlated features. Both new measures explicitly check for dependent features and the second measure also includes a term to discount correlated features. Both measures correctly identify known informative features in the artificial data sets and correlate well with classifier accuracy. The final part of this thesis examines the use of feature selection for time-series data by using feature selection to determine important individual time windows or key frames in the series. Time-series feature selection is used with the MBT algorithm to create classification trees for time-series data. The feature selected MBT algorithm is tested on two human motion recognition tasks: full-body human motion recognition from joint angle data and hand gesture recognition from electromyography data. Results indicate that the feature selected MBT is able to achieve high classification accuracy on the time-series data while maintaining a short test time

    Room acoustic modeling with the time-domain discontinuous Galerkin method

    Get PDF
    corecore