1,887 research outputs found

    Neural synchrony in cortical networks : history, concept and current status

    Get PDF
    Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies

    Neural synchrony in cortical networks : history, concept and current status

    Get PDF
    Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies

    Oscillations, metastability and phase transitions in brain and models of cognition

    Get PDF
    Neuroscience is being practiced in many different forms and at many different organizational levels of the Nervous System. Which of these levels and associated conceptual frameworks is most informative for elucidating the association of neural processes with processes of Cognition is an empirical question and subject to pragmatic validation. In this essay, I select the framework of Dynamic System Theory. Several investigators have applied in recent years tools and concepts of this theory to interpretation of observational data, and for designing neuronal models of cognitive functions. I will first trace the essentials of conceptual development and hypotheses separately for discerning observational tests and criteria for functional realism and conceptual plausibility of the alternatives they offer. I will then show that the statistical mechanics of phase transitions in brain activity, and some of its models, provides a new and possibly revealing perspective on brain events in cognition

    Cortical Synchronization and Perceptual Framing

    Full text link
    How does the brain group together different parts of an object into a coherent visual object representation? Different parts of an object may be processed by the brain at different rates and may thus become desynchronized. Perceptual framing is a process that resynchronizes cortical activities corresponding to the same retinal object. A neural network model is presented that is able to rapidly resynchronize clesynchronized neural activities. The model provides a link between perceptual and brain data. Model properties quantitatively simulate perceptual framing data, including psychophysical data about temporal order judgments and the reduction of threshold contrast as a function of stimulus length. Such a model has earlier been used to explain data about illusory contour formation, texture segregation, shape-from-shading, 3-D vision, and cortical receptive fields. The model hereby shows how many data may be understood as manifestations of a cortical grouping process that can rapidly resynchronize image parts which belong together in visual object representations. The model exhibits better synchronization in the presence of noise than without noise, a type of stochastic resonance, and synchronizes robustly when cells that represent different stimulus orientations compete. These properties arise when fast long-range cooperation and slow short-range competition interact via nonlinear feedback interactions with cells that obey shunting equations.Office of Naval Research (N00014-92-J-1309, N00014-95-I-0409, N00014-95-I-0657, N00014-92-J-4015); Air Force Office of Scientific Research (F49620-92-J-0334, F49620-92-J-0225)

    Cortical neural computation by discrete results hypothesis

    Full text link
    One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called “Discrete Results” (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of “Discrete Results” is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel “Discrete Results” concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast-spiking (FS) interneuron may be a key element in our hypothesis providing the basis for this computation.Work was supported by a grant from Ministerio de Economía y Competitividad (BFU2012-36107

    Oscillatory dynamics of perceptual to conceptual transformations in the ventral visual pathway

    Get PDF
    Object recognition requires dynamic transformations of low-level visual inputs to complex semantic representations. While this process depends on the ventral visual pathway (VVP), we lack an incremental account from low-level inputs to semantic representations, and the mechanistic details of these dynamics. Here we combine computational models of vision with semantics, and test the output of the incremental model against patterns of neural oscillations recorded with MEG in humans. Representational Similarity Analysis showed visual information was represented in alpha activity throughout the VVP, and semantic information was represented in theta activity. Furthermore, informational connectivity showed visual information travels through feedforward connections, while visual information is transformed into semantic representations through feedforward and feedback activity, centered on the anterior temporal lobe. Our research highlights that the complex transformations between visual and semantic information is driven by feedforward and recurrent dynamics resulting in object-specific semantics

    Metastability, Criticality and Phase Transitions in brain and its Models

    Get PDF
    This essay extends the previously deposited paper "Oscillations, Metastability and Phase Transitions" to incorporate the theory of Self-organizing Criticality. The twin concepts of Scaling and Universality of the theory of nonequilibrium phase transitions is applied to the role of reentrant activity in neural circuits of cerebral cortex and subcortical neural structures

    Binding Mechanisms in Visual Perception and Their Link With Neural Oscillations: A Review of Evidence From tACS

    Get PDF
    Neurophysiological studies in humans employing magneto- (MEG) and electro- (EEG) encephalography increasingly suggest that oscillatory rhythmic activity of the brain may be a core mechanism for binding sensory information across space, time, and object features to generate a unified perceptual representation. To distinguish whether oscillatory activity is causally related to binding processes or whether, on the contrary, it is a mere epiphenomenon, one possibility is to employ neuromodulatory techniques such as transcranial alternating current stimulation (tACS). tACS has seen a rising interest due to its ability to modulate brain oscillations in a frequency-dependent manner. In the present review, we critically summarize current tACS evidence for a causal role of oscillatory activity in spatial, temporal, and feature binding in the context of visual perception. For temporal binding, the emerging picture supports a causal link with the power and the frequency of occipital alpha rhythms (8–12 Hz); however, there is no consistent evidence on the causal role of the phase of occipital tACS. For feature binding, the only study available showed a modulation by occipital alpha tACS. The majority of studies that successfully modulated oscillatory activity and behavioral performance in spatial binding targeted parietal areas, with the main rhythms causally linked being the theta (~7 Hz) and beta (~18 Hz) frequency bands. On the other hand, spatio-temporal binding has been directly modulated by parieto-occipital gamma (~40–60 Hz) and alpha (10 Hz) tACS, suggesting a potential role of cross-frequency coupling when binding across space and time. Nonetheless, negative or partial results have also been observed, suggesting methodological limitations that should be addressed in future research. Overall, the emerging picture seems to support a causal role of brain oscillations in binding processes and, consequently, a certain degree of plasticity for shaping binding mechanisms in visual perception, which, if proved to have long lasting effects, can find applications in different clinical populations

    Perspectives on the Neuroscience of Cognition and Consciousness

    Get PDF
    The origin and current use of the concepts of computation, representation and information in Neuroscience are examined and conceptual flaws are identified which vitiate their usefulness for addressing problems of the neural basis of Cognition and Consciousness. In contrast, a convergence of views is presented to support the characterization of the Nervous System as a complex dynamical system operating in the metastable regime, and capable of evolving to configurations and transitions in phase space with potential relevance for Cognition and Consciousness
    corecore