2,156 research outputs found

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Semantic data mining and linked data for a recommender system in the AEC industry

    Get PDF
    Even though it can provide design teams with valuable performance insights and enhance decision-making, monitored building data is rarely reused in an effective feedback loop from operation to design. Data mining allows users to obtain such insights from the large datasets generated throughout the building life cycle. Furthermore, semantic web technologies allow to formally represent the built environment and retrieve knowledge in response to domain-specific requirements. Both approaches have independently established themselves as powerful aids in decision-making. Combining them can enrich data mining processes with domain knowledge and facilitate knowledge discovery, representation and reuse. In this article, we look into the available data mining techniques and investigate to what extent they can be fused with semantic web technologies to provide recommendations to the end user in performance-oriented design. We demonstrate an initial implementation of a linked data-based system for generation of recommendations

    Ontology-Based Consistent Specification of Sensor Data Acquisition Plans in Cross-Domain IoT Platforms

    Get PDF
    Nowadays there is an high number of IoT applications that seldom can interact with each other because developed within different Vertical IoT Platforms that adopt different standards. Several efforts are devoted to the construction of cross-layered frameworks that facilitate the interoperability among cross-domain IoT platforms for the development of horizontal applications. Even if their realization poses different challenges across all layers of the network stack, in this paper we focus on the interoperability issues that arise at the data management layer. Specifically, starting from a flexible multi-granular Spatio-Temporal-Thematic data model according to which events generated by different kinds of sensors can be represented, we propose a Semantic Virtualization approach according to which the sensors belonging to different IoT platforms and the schema of the produced event streams are described in a Domain Ontology, obtained through the extension of the well-known Semantic Sensor Network ontology. Then, these sensors can be exploited for the creation of Data Acquisition Plans by means of which the streams of events can be filtered, merged, and aggregated in a meaningful way. A notion of consistency is introduced to bind the output streams of the services contained in the Data Acquisition Plan with the Domain Ontology in order to provide a semantic description of its final output. When these plans meet the consistency constraints, it means that the data they handle are well described at the Ontological level and thus the data acquisition process over passed the interoperability barriers occurring in the original sources. The facilities of the StreamLoader prototype are finally presented for supporting the user in the Semantic Virtualization process and for the construction of meaningful Data Acquisition Plans

    An Analytics Platform for Integrating and Computing Spatio-Temporal Metrics

    Get PDF
    In large-scale context-aware applications, a central design concern is capturing, managing and acting upon location and context data. The ability to understand the collected data and define meaningful contextual events, based on one or more incoming (contextual) data streams, both for a single and multiple users, is hereby critical for applications to exhibit location- and context-aware behaviour. In this article, we describe a context-aware, data-intensive metrics platform —focusing primarily on its geospatial support—that allows exactly this: to define and execute metrics, which capture meaningful spatio-temporal and contextual events relevant for the application realm. The platform (1) supports metrics definition and execution; (2) provides facilities for real-time, in-application actions upon metrics execution results; (3) allows post-hoc analysis and visualisation of collected data and results. It hereby offers contextual and geospatial data management and analytics as a service, and allow context-aware application developers to focus on their core application logic. We explain the core platform and its ecosystem of supporting applications and tools, elaborate the most important conceptual features, and discuss implementation realised through a distributed, micro-service based cloud architecture. Finally, we highlight possible application fields, and present a real-world case study in the realm of psychological health

    A Data-driven Methodology Towards Mobility- and Traffic-related Big Spatiotemporal Data Frameworks

    Get PDF
    Human population is increasing at unprecedented rates, particularly in urban areas. This increase, along with the rise of a more economically empowered middle class, brings new and complex challenges to the mobility of people within urban areas. To tackle such challenges, transportation and mobility authorities and operators are trying to adopt innovative Big Data-driven Mobility- and Traffic-related solutions. Such solutions will help decision-making processes that aim to ease the load on an already overloaded transport infrastructure. The information collected from day-to-day mobility and traffic can help to mitigate some of such mobility challenges in urban areas. Road infrastructure and traffic management operators (RITMOs) face several limitations to effectively extract value from the exponentially growing volumes of mobility- and traffic-related Big Spatiotemporal Data (MobiTrafficBD) that are being acquired and gathered. Research about the topics of Big Data, Spatiotemporal Data and specially MobiTrafficBD is scattered, and existing literature does not offer a concrete, common methodological approach to setup, configure, deploy and use a complete Big Data-based framework to manage the lifecycle of mobility-related spatiotemporal data, mainly focused on geo-referenced time series (GRTS) and spatiotemporal events (ST Events), extract value from it and support decision-making processes of RITMOs. This doctoral thesis proposes a data-driven, prescriptive methodological approach towards the design, development and deployment of MobiTrafficBD Frameworks focused on GRTS and ST Events. Besides a thorough literature review on Spatiotemporal Data, Big Data and the merging of these two fields through MobiTraffiBD, the methodological approach comprises a set of general characteristics, technical requirements, logical components, data flows and technological infrastructure models, as well as guidelines and best practices that aim to guide researchers, practitioners and stakeholders, such as RITMOs, throughout the design, development and deployment phases of any MobiTrafficBD Framework. This work is intended to be a supporting methodological guide, based on widely used Reference Architectures and guidelines for Big Data, but enriched with inherent characteristics and concerns brought about by Big Spatiotemporal Data, such as in the case of GRTS and ST Events. The proposed methodology was evaluated and demonstrated in various real-world use cases that deployed MobiTrafficBD-based Data Management, Processing, Analytics and Visualisation methods, tools and technologies, under the umbrella of several research projects funded by the European Commission and the Portuguese Government.A população humana cresce a um ritmo sem precedentes, particularmente nas áreas urbanas. Este aumento, aliado ao robustecimento de uma classe média com maior poder económico, introduzem novos e complexos desafios na mobilidade de pessoas em áreas urbanas. Para abordar estes desafios, autoridades e operadores de transportes e mobilidade estão a adotar soluções inovadoras no domínio dos sistemas de Dados em Larga Escala nos domínios da Mobilidade e Tráfego. Estas soluções irão apoiar os processos de decisão com o intuito de libertar uma infraestrutura de estradas e transportes já sobrecarregada. A informação colecionada da mobilidade diária e da utilização da infraestrutura de estradas pode ajudar na mitigação de alguns dos desafios da mobilidade urbana. Os operadores de gestão de trânsito e de infraestruturas de estradas (em inglês, road infrastructure and traffic management operators — RITMOs) estão limitados no que toca a extrair valor de um sempre crescente volume de Dados Espaciotemporais em Larga Escala no domínio da Mobilidade e Tráfego (em inglês, Mobility- and Traffic-related Big Spatiotemporal Data —MobiTrafficBD) que estão a ser colecionados e recolhidos. Os trabalhos de investigação sobre os tópicos de Big Data, Dados Espaciotemporais e, especialmente, de MobiTrafficBD, estão dispersos, e a literatura existente não oferece uma metodologia comum e concreta para preparar, configurar, implementar e usar uma plataforma (framework) baseada em tecnologias Big Data para gerir o ciclo de vida de dados espaciotemporais em larga escala, com ênfase nas série temporais georreferenciadas (em inglês, geo-referenced time series — GRTS) e eventos espacio- temporais (em inglês, spatiotemporal events — ST Events), extrair valor destes dados e apoiar os RITMOs nos seus processos de decisão. Esta dissertação doutoral propõe uma metodologia prescritiva orientada a dados, para o design, desenvolvimento e implementação de plataformas de MobiTrafficBD, focadas em GRTS e ST Events. Além de uma revisão de literatura completa nas áreas de Dados Espaciotemporais, Big Data e na junção destas áreas através do conceito de MobiTrafficBD, a metodologia proposta contem um conjunto de características gerais, requisitos técnicos, componentes lógicos, fluxos de dados e modelos de infraestrutura tecnológica, bem como diretrizes e boas práticas para investigadores, profissionais e outras partes interessadas, como RITMOs, com o objetivo de guiá-los pelas fases de design, desenvolvimento e implementação de qualquer pla- taforma MobiTrafficBD. Este trabalho deve ser visto como um guia metodológico de suporte, baseado em Arqui- teturas de Referência e diretrizes amplamente utilizadas, mas enriquecido com as característi- cas e assuntos implícitos relacionados com Dados Espaciotemporais em Larga Escala, como no caso de GRTS e ST Events. A metodologia proposta foi avaliada e demonstrada em vários cenários reais no âmbito de projetos de investigação financiados pela Comissão Europeia e pelo Governo português, nos quais foram implementados métodos, ferramentas e tecnologias nas áreas de Gestão de Dados, Processamento de Dados e Ciência e Visualização de Dados em plataformas MobiTrafficB

    Geospatial Data Management Research: Progress and Future Directions

    Get PDF
    Without geospatial data management, today´s challenges in big data applications such as earth observation, geographic information system/building information modeling (GIS/BIM) integration, and 3D/4D city planning cannot be solved. Furthermore, geospatial data management plays a connecting role between data acquisition, data modelling, data visualization, and data analysis. It enables the continuous availability of geospatial data and the replicability of geospatial data analysis. In the first part of this article, five milestones of geospatial data management research are presented that were achieved during the last decade. The first one reflects advancements in BIM/GIS integration at data, process, and application levels. The second milestone presents theoretical progress by introducing topology as a key concept of geospatial data management. In the third milestone, 3D/4D geospatial data management is described as a key concept for city modelling, including subsurface models. Progress in modelling and visualization of massive geospatial features on web platforms is the fourth milestone which includes discrete global grid systems as an alternative geospatial reference framework. The intensive use of geosensor data sources is the fifth milestone which opens the way to parallel data storage platforms supporting data analysis on geosensors. In the second part of this article, five future directions of geospatial data management research are presented that have the potential to become key research fields of geospatial data management in the next decade. Geo-data science will have the task to extract knowledge from unstructured and structured geospatial data and to bridge the gap between modern information technology concepts and the geo-related sciences. Topology is presented as a powerful and general concept to analyze GIS and BIM data structures and spatial relations that will be of great importance in emerging applications such as smart cities and digital twins. Data-streaming libraries and “in-situ” geo-computing on objects executed directly on the sensors will revolutionize geo-information science and bridge geo-computing with geospatial data management. Advanced geospatial data visualization on web platforms will enable the representation of dynamically changing geospatial features or moving objects’ trajectories. Finally, geospatial data management will support big geospatial data analysis, and graph databases are expected to experience a revival on top of parallel and distributed data stores supporting big geospatial data analysis

    Geospatial Information Research: State of the Art, Case Studies and Future Perspectives

    Get PDF
    Geospatial information science (GI science) is concerned with the development and application of geodetic and information science methods for modeling, acquiring, sharing, managing, exploring, analyzing, synthesizing, visualizing, and evaluating data on spatio-temporal phenomena related to the Earth. As an interdisciplinary scientific discipline, it focuses on developing and adapting information technologies to understand processes on the Earth and human-place interactions, to detect and predict trends and patterns in the observed data, and to support decision making. The authors – members of DGK, the Geoinformatics division, as part of the Committee on Geodesy of the Bavarian Academy of Sciences and Humanities, representing geodetic research and university teaching in Germany – have prepared this paper as a means to point out future research questions and directions in geospatial information science. For the different facets of geospatial information science, the state of art is presented and underlined with mostly own case studies. The paper thus illustrates which contributions the German GI community makes and which research perspectives arise in geospatial information science. The paper further demonstrates that GI science, with its expertise in data acquisition and interpretation, information modeling and management, integration, decision support, visualization, and dissemination, can help solve many of the grand challenges facing society today and in the future

    Data modelling for emergency response

    Get PDF
    Emergency response is one of the most demanding phases in disaster management. The fire brigade, paramedics, police and municipality are the organisations involved in the first response to the incident. They coordinate their work based on welldefined policies and procedures, but they also need the most complete and up-todate information about the incident, which would allow a reliable decision-making.\ud There is a variety of systems answering the needs of different emergency responders, but they have many drawbacks: the systems are developed for a specific sector; it is difficult to exchange information between systems; the systems offer too much or little information, etc. Several systems have been developed to share information during emergencies but usually they maintain the nformation that is coming from field operations in an unstructured way.\ud This report presents a data model for organisation of dynamic data (operational and situational data) for emergency response. The model is developed within the RGI-239 project ‘Geographical Data Infrastructure for Disaster Management’ (GDI4DM)

    The Hierarchic treatment of marine ecological information from spatial networks of benthic platforms

    Get PDF
    Measuring biodiversity simultaneously in different locations, at different temporal scales, and over wide spatial scales is of strategic importance for the improvement of our understanding of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being conceived and established at a spatial scale capable of tracking energy fluxes across benthic and pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling the acquisition of new biological and environmental data at an appropriate spatiotemporal scale. At this stage, one of the main problems for an effective application of these technologies is the processing, storage, and treatment of the acquired complex ecological information. Here, we provide a conceptual overview on the technological developments in the multiparametric generation, storage, and automated hierarchic treatment of biological and environmental information required to capture the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological data acquisition and processing in different steps and prone to automation. We also give an example of population biomass, community richness and biodiversity data computation (as indicators for ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the software requirements for that automated data processing at the level of cyber-infrastructures with sensor calibration and control, data banking, and ingestion into large data portals.Peer ReviewedPostprint (published version

    Building bridges: experiences and lessons learned from the implementation of INSPIRE and e-reporting of air quality data in Europe

    Get PDF
    The collection, exchange and use of air quality data require diverse monitoring, processing and dissemination systems to work together. They should supply data, which can afterwards be used in different contexts such as planning, population exposure and environmental impact assessment. As air quality is not dependant on national borders this would only be feasible on an international level. This manuscript reports on the lessons learned from using the world’s largest data harmonization effort for environmental information infrastructure - INSPIRE as a backbone of a European wide spatial data reporting system which involves an unprecedented number of actors and volumes of data. It is important in the context of Digital Earth, and the establishment of a global SDI through the Global Earth Observation System of Systems (GEOSS), as the quality of ambient air is among the pressing environmental problems of today. We summarize our findings from the perspective of national public authorities, obliged by law to transmit spatio-temporal data in order to streamline reporting and facilitate the use of information, while keeping public expenditure at minimum. To identify what works in this type of reporting we established a cross-border case study, looking at the process of harmonization and exchange of data in Belgium and the Netherlands based on interoperable standards. Our results cover the legal, semantic, technological and organizational aspects of reporting. They are relevant to a cross-thematic audience, having to undergo similar processes of reporting, such as climate change, but also environmental noise, marine, biodiversity, and water management.JRC.H.6-Digital Earth and Reference Dat
    corecore