5,449 research outputs found

    Cyber-Virtual Systems: Simulation, Validation & Visualization

    Full text link
    We describe our ongoing work and view on simulation, validation and visualization of cyber-physical systems in industrial automation during development, operation and maintenance. System models may represent an existing physical part - for example an existing robot installation - and a software simulated part - for example a possible future extension. We call such systems cyber-virtual systems. In this paper, we present the existing VITELab infrastructure for visualization tasks in industrial automation. The new methodology for simulation and validation motivated in this paper integrates this infrastructure. We are targeting scenarios, where industrial sites which may be in remote locations are modeled and visualized from different sites anywhere in the world. Complementing the visualization work, here, we are also concentrating on software modeling challenges related to cyber-virtual systems and simulation, testing, validation and verification techniques for them. Software models of industrial sites require behavioural models of the components of the industrial sites such as models for tools, robots, workpieces and other machinery as well as communication and sensor facilities. Furthermore, collaboration between sites is an important goal of our work.Comment: Preprint, 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2014

    Identifying and Forecasting Potential Biophysical Risk Areas within a Tropical Mangrove Ecosystem Using Multi-Sensor Data

    Get PDF
    Mangroves are one of the most productive ecosystems known for provisioning of various ecosystem goods and services. They help in sequestering large amounts of carbon, protecting coastline against erosion, and reducing impacts of natural disasters such as hurricanes. Bhitarkanika Wildlife Sanctuary in Odisha harbors the second largest mangrove ecosystem in India. This study used Terra, Landsat and Sentinel-1 satellite data for spatio-temporal monitoring of mangrove forest within Bhitarkanika Wildlife Sanctuary between 2000 and 2016. Three biophysical parameters were used to assess mangrove ecosystem health: leaf chlorophyll (CHL), Leaf Area Index (LAI), and Gross Primary Productivity (GPP). A long-term analysis of meteorological data such as precipitation and temperature was performed to determine an association between these parameters and mangrove biophysical characteristics. The correlation between meteorological parameters and mangrove biophysical characteristics enabled forecasting of mangrove health and productivity for year 2050 by incorporating IPCC projected climate data. A historical analysis of land cover maps was also performed using Landsat 5 and 8 data to determine changes in mangrove area estimates in years 1995, 2004 and 2017. There was a decrease in dense mangrove extent with an increase in open mangroves and agricultural area. Despite conservation efforts, the current extent of dense mangrove is projected to decrease up to 10% by the year 2050. All three biophysical characteristics including GPP, LAI and CHL, are projected to experience a net decrease of 7.7%, 20.83% and 25.96% respectively by 2050 compared to the mean annual value in 2016. This study will help the Forest Department, Government of Odisha in managing and taking appropriate decisions for conserving and sustaining the remaining mangrove forest under the changing climate and developmental activities

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Ontology-Based Consistent Specification of Sensor Data Acquisition Plans in Cross-Domain IoT Platforms

    Get PDF
    Nowadays there is an high number of IoT applications that seldom can interact with each other because developed within different Vertical IoT Platforms that adopt different standards. Several efforts are devoted to the construction of cross-layered frameworks that facilitate the interoperability among cross-domain IoT platforms for the development of horizontal applications. Even if their realization poses different challenges across all layers of the network stack, in this paper we focus on the interoperability issues that arise at the data management layer. Specifically, starting from a flexible multi-granular Spatio-Temporal-Thematic data model according to which events generated by different kinds of sensors can be represented, we propose a Semantic Virtualization approach according to which the sensors belonging to different IoT platforms and the schema of the produced event streams are described in a Domain Ontology, obtained through the extension of the well-known Semantic Sensor Network ontology. Then, these sensors can be exploited for the creation of Data Acquisition Plans by means of which the streams of events can be filtered, merged, and aggregated in a meaningful way. A notion of consistency is introduced to bind the output streams of the services contained in the Data Acquisition Plan with the Domain Ontology in order to provide a semantic description of its final output. When these plans meet the consistency constraints, it means that the data they handle are well described at the Ontological level and thus the data acquisition process over passed the interoperability barriers occurring in the original sources. The facilities of the StreamLoader prototype are finally presented for supporting the user in the Semantic Virtualization process and for the construction of meaningful Data Acquisition Plans
    • …
    corecore